Development of Piperazinediones as dual inhibitor for treatment of Alzheimer's disease

European Journal of Medicinal Chemistry
2018.0

Abstract

Novel multifunctional 3,6-Diphenyl-1,4-bis(phenylsulfonyl)piperazine-2,5-dione derivatives were designed and synthesized for the treatment of Alzheimer's disease (AD). The designed scaffold has blood brain barrier penetrating ability, acetylcholinesterase (AChE) and matrix metalloproteinase-2 (MMP-2) inhibition potential. Compounds 52 and 46 showed very significant inhibition against AChE, IC50 = 32.45 ± 0.044, 28.65 ± 0.029, BuChE, IC50 = 157.95 ± 0.264, 160.58 ± 0.082 and MMP-2, IC50 = 36.83 ± 0.015, 19.57 ± 0.005 (nM). In the enzyme kinetics study, lead molecule 46 showed non-competitive inhibition of AChE with Ki = 7 nM and competitive inhibition of MMP-2 with Ki = 20 nM. Compounds 52 and 46 inhibited AChE-induced Aβ aggregation at 20 μM. The compounds also exhibited in-vitro antioxidant potential in DPPH assay. Further, compound 46 was found to be a promising neuroprotective agent in MC65 cells. Lead molecule 46 significantly enhanced working memory in scopolamine induced amnesia animal model at dose of 5 mg/kg dose. The mitochondrial membrane potential was restored in animals when treated with compounds 52 and 46.

Knowledge Graph

Similar Paper

Development of Piperazinediones as dual inhibitor for treatment of Alzheimer's disease
European Journal of Medicinal Chemistry 2018.0
Design and development of molecular hybrids of 2-pyridylpiperazine and 5-phenyl-1,3,4-oxadiazoles as potential multifunctional agents to treat Alzheimer's disease
European Journal of Medicinal Chemistry 2019.0
Synthesis, biological evaluation and molecular docking study of novel piperidine and piperazine derivatives as multi-targeted agents to treat Alzheimer’s disease
Bioorganic & Medicinal Chemistry 2015.0
Benzylpiperidine-Linked Diarylthiazoles as Potential Anti-Alzheimer’s Agents: Synthesis and Biological Evaluation
Journal of Medicinal Chemistry 2016.0
Design, synthesis, and biological evaluation of novel N-Benzyl piperidine derivatives as potent HDAC/AChE inhibitors for Alzheimer’s disease
Bioorganic & Medicinal Chemistry 2023.0
Design and development of multitarget-directed N-Benzylpiperidine analogs as potential candidates for the treatment of Alzheimer's disease
European Journal of Medicinal Chemistry 2019.0
Synthesis, in vitro assay, and molecular modeling of new piperidine derivatives having dual inhibitory potency against acetylcholinesterase and Aβ1–42 aggregation for Alzheimer’s disease therapeutics
Bioorganic & Medicinal Chemistry 2007.0
Design, synthesis and evaluation of novel indandione derivatives as multifunctional agents with cholinesterase inhibition, anti-β-amyloid aggregation, antioxidant and neuroprotection properties against Alzheimer’s disease
Bioorganic & Medicinal Chemistry 2016.0
Novel inhibitors of AChE and Aβ aggregation with neuroprotective properties as lead compounds for the treatment of Alzheimer's disease
European Journal of Medicinal Chemistry 2022.0
Design, synthesis, and evaluation of novel N-(4-phenoxybenzyl)aniline derivatives targeting acetylcholinesterase, β-amyloid aggregation and oxidative stress to treat Alzheimer’s disease
Bioorganic & Medicinal Chemistry 2019.0