Synthesis and antimycobacterial activity of 1-(β-d-Ribofuranosyl)-4-coumarinyloxymethyl- / -coumarinyl-1,2,3-triazole

European Journal of Medicinal Chemistry
2018.0

Abstract

A series of β-d-ribofuranosyl coumarinyl-1,2,3-triazoles have been synthesized by Cu-catalyzed cycloaddition reaction between azidosugar and 7-O-/7-alkynylated coumarins in 62-70% overall yields. The in vitro antimycobacterial activity evaluation of the synthesized triazolo-conjugates against Mycobacterium tuberculosis revealed that compounds were bactericidal in nature and some of them were found to be more active than one of the first line antimycobacterial drug ethambutol against sensitive reference strain H37Rv, and 7 to 420 times more active than all four first line antimycobacterial drugs (isoniazid, rifampicin, ethambutol and streptomycin) against multidrug resistant clinical isolate 591. Study of in silico pharmacokinetic profile indicated the drug like characters for the test molecules. Further, transmission electron microscopic experiments revealed that these compounds interfere with the constitution of bacterial cell wall possibly by targeting mycobacterial InhA and DNA gyrase enzymes. Study conducted on the activities of the test compounds on bacterial InhA and DNA gyrase revealed that the most bactericidal test compound, N1-(β-d-ribofuranosyl)-C4-(4-methylcoumarin-7-oxymethyl)-1,2,3-triazole (6b) and its corresponding directly linked conjugate N1-(β-d-ribofuranosyl)-C4-(4-methylcoumarin-7-yl)-1,2,3-triazole (11b) significantly inhibited the activity of both the enzymes. The results were further supported by molecular docking studies of the compound 6b and 11b with bacterial InhA and DNA gyrase B enzymes. Further, the cytotoxicity study of some of the better active compounds on THP-1 macrophage cell line using MTT assay showed that the synthesized compounds were non-cytotoxic.

Knowledge Graph

Similar Paper

Synthesis and antimycobacterial activity of 1-(β-d-Ribofuranosyl)-4-coumarinyloxymethyl- / -coumarinyl-1,2,3-triazole
European Journal of Medicinal Chemistry 2018.0
Synthesis, characterization and in vitro biological evaluation of some novel 1,3,5-triazine–Schiff base conjugates as potential antimycobacterial agents
Bioorganic & Medicinal Chemistry Letters 2013.0
Rational design and synthesis of novel dibenzo[b,d]furan-1,2,3-triazole conjugates as potent inhibitors of Mycobacterium tuberculosis
European Journal of Medicinal Chemistry 2014.0
Synthesis, antimycobacterial activity and docking study of 2-aroyl-[1]benzopyrano[4,3- c ]pyrazol-4(1 H )-one derivatives and related hydrazide-hydrazones
Bioorganic & Medicinal Chemistry Letters 2017.0
1,2,3-Triazole derivatives as antitubercular agents: synthesis, biological evaluation and molecular docking study
MedChemComm 2015.0
Synthesis and biological evaluation of 1H-pyrrolo[2,3-d]pyrimidine-1,2,3-triazole derivatives as novel anti-tubercular agents
Bioorganic & Medicinal Chemistry Letters 2019.0
A click chemistry approach for the synthesis of cyclic ureido tethered coumarinyl and 1-aza coumarinyl 1,2,3-triazoles as inhibitors of Mycobacterium tuberculosis H37Rv and their in silico studies
Bioorganic & Medicinal Chemistry 2019.0
Azide-alkyne cycloaddition towards 1H-1,2,3-triazole-tethered gatifloxacin and isatin conjugates: Design, synthesis and in vitro anti-mycobacterial evaluation
European Journal of Medicinal Chemistry 2017.0
Synthesis of novel 1,2,3-triazole derivatives of isoniazid and their in vitro and in vivo antimycobacterial activity evaluation
European Journal of Medicinal Chemistry 2014.0
Synthesis and biological evaluation of novel 1,2,3-triazole derivatives as anti-tubercular agents
Bioorganic & Medicinal Chemistry Letters 2017.0