Identification of (1S,4S)-2,5-diazabicyclo[2.2.1]heptane-dithiocarbamate-nitrostyrene hybrid as potent antiproliferative and apoptotic inducing agent against cervical cancer cell lines

European Journal of Medicinal Chemistry
2018.0

Abstract

The present study seeks to describe the design and synthesis of six new Michael adducts of (1S,4S)-2,5-diazabicyclo[2.2.1]heptane-dithiocarbamate with nitrostyrenes and their in vitro antiproliferative activity against human cervical cancer cell lines [HeLa (HPV 18 positive), CaSki (HPV 16 positive) and ViBo (HPV negative) cervical cancer cell lines]. Virtual screening of the physicochemical properties of all compounds have also been presented. All the compounds exploited significant antiproliferative activity on the three cervical cancer cell lines. Compound 8a was found to be most potent, displaying in vitro antiproliferative activity against HeLa, CaSki and ViBo cervical cancer cell lines superior to Cisplatin and Paclitaxel with IC50 values 0.99 ± 0.007, 2.36 ± 0.016 and 0.73 ± 0.002 μM respectively. In addition, compound 8a did not trigger the necrosis cell death to the test cancer cell lines. Further mechanistic study revealed that compound 8a could inhibit the cancer cell proliferation by inducing apoptosis through caspase-3 activation. Moreover, cell cycle analysis indicated that compound 8a could arrest the cell cycle at the G1 phase for HeLa and CaSki cancer cells. At the predetermined IC50 values on cancer cells, compound 8a did not induce any necrotic (cytotoxic) death to the normal human lymphocytes. In the present design, (1S,4S)-2,5-diazabicyclo[2.2.1]heptane system was found to be superior than the piperazine counterpart 11.

Knowledge Graph

Similar Paper

Identification of (1S,4S)-2,5-diazabicyclo[2.2.1]heptane-dithiocarbamate-nitrostyrene hybrid as potent antiproliferative and apoptotic inducing agent against cervical cancer cell lines
European Journal of Medicinal Chemistry 2018.0
Design and synthesis of novel 1,2,3-triazole-dithiocarbamate hybrids as potential anticancer agents
European Journal of Medicinal Chemistry 2013.0
Design, synthesis and antiproliferative activity studies of novel dithiocarbamate–chalcone derivates
Bioorganic & Medicinal Chemistry Letters 2016.0
Development of S-aryl dithiocarbamate derived novel antiproliferative compound exhibiting tubulin bundling
Bioorganic & Medicinal Chemistry 2022.0
Synthesis and anticancer potential of benzothiazole linked phenylpyridopyrimidinones and their diones as mitochondrial apoptotic inducers
Bioorganic & Medicinal Chemistry Letters 2014.0
Design, synthesis and antiproliferative activity studies of novel 1,2,3-triazole–dithiocarbamate–urea hybrids
European Journal of Medicinal Chemistry 2013.0
Design, synthesis and in vitro biological evaluation of novel [1,2,3]triazolo[4,5-d]pyrimidine derivatives containing a thiosemicarbazide moiety
European Journal of Medicinal Chemistry 2018.0
Synthesis and biological activities of dithiocarbamates containing 2(5H)-furanone-piperazine
European Journal of Medicinal Chemistry 2018.0
Synthesis and antitumor evaluation of 5-(benzo[d][1,3]dioxol-5-ylmethyl)-4-(tert-butyl)-N-arylthiazol-2-amines
MedChemComm 2016.0
Discovery of novel heteroarylmethylcarbamodithioates as potent anticancer agents: Synthesis, structure-activity relationship analysis and biological evaluation
European Journal of Medicinal Chemistry 2016.0