Structure-guided evolution of a 2-phenyl-4-carboxyquinoline chemotype into PPARα selective agonists: New leads for oculovascular conditions

Bioorganic & Medicinal Chemistry Letters
2018.0

Abstract

Small molecule agonism of PPARα represents a promising new avenue for the development of non-invasive treatments for oculovascular diseases like diabetic retinopathy and age-related macular degeneration. Herein we report initial structure-activity relationships for the newly identified quinoline-based PPARα agonist, Y-0452. Preliminary computational studies led to the hypothesis that carboxylic acid transposition and deconstruction of the Y-0452 quinoline system would enhance ligand-protein interactions and better complement the nature of the binding pocket. A focused subset of analogs was designed, synthesized, and assessed for PPARα agonism. Two key observations arose from this work 1) contrary to other PPARα agonists, incorporation of the fibrate "head-group" decreases PPARα selectivity and instead provides pan-PPAR agonists and 2) computational models reveal a relatively unexploited amphiphilic pocket in PPARα that provides new opportunities for the development of novel agonists. As an example, compound 10 exhibits more potent PPARα agonism (EC50 = ∼6 µM) than Y-0452 (EC50 = ∼50 µM) and manifests >20-fold selectivity for PPARα over the PPARγ and PPARδ isoforms. More detailed biochemical analysis of 10 confirms typical downstream responses of PPARα agonism including PPARα upregulation, induction of target genes, and inhibition of cell migration.

Knowledge Graph

Similar Paper

Structure-guided evolution of a 2-phenyl-4-carboxyquinoline chemotype into PPARα selective agonists: New leads for oculovascular conditions
Bioorganic & Medicinal Chemistry Letters 2018.0
Evolution of a 4-Benzyloxy-benzylamino Chemotype to Provide Efficacious, Potent, and Isoform Selective PPARα Agonists as Leads for Retinal Disorders
Journal of Medicinal Chemistry 2020.0
Design, Synthesis, and Structure–Activity Relationships of Biaryl Anilines as Subtype-Selective PPAR-alpha Agonists
ACS Medicinal Chemistry Letters 2023.0
4,4-Dimethyl-1,2,3,4-tetrahydroquinoline-based PPARα/γ agonists. Part. II: Synthesis and pharmacological evaluation of oxime and acidic head group structural variations
Bioorganic & Medicinal Chemistry Letters 2009.0
4,4-Dimethyl-1,2,3,4-tetrahydroquinoline-based PPARα/γ agonists. Part I: Synthesis and pharmacological evaluation
Bioorganic & Medicinal Chemistry Letters 2008.0
Design of potent PPARα agonists
Bioorganic & Medicinal Chemistry Letters 2007.0
Identification of Picrasidine C as a Subtype-Selective PPARα Agonist
Journal of Natural Products 2016.0
Modulation of PPAR subtype selectivity. Part 2: Transforming PPARα/γ dual agonist into α selective PPAR agonist through bioisosteric modification
Bioorganic & Medicinal Chemistry Letters 2011.0
7-Hydroxy-benzopyran-4-one Derivatives: A Novel Pharmacophore of Peroxisome Proliferator-Activated Receptor α and -γ (PPARα and γ) Dual Agonists
Journal of Medicinal Chemistry 2009.0
Structure–activity relationship studies of non-carboxylic acid peroxisome proliferator-activated receptor α/δ (PPARα/δ) dual agonists
Bioorganic & Medicinal Chemistry 2016.0