Discovery of novel leucyladenylate sulfamate surrogates as leucyl-tRNA synthetase (LRS)-targeted mammalian target of rapamycin complex 1 (mTORC1) inhibitors

Bioorganic & Medicinal Chemistry
2018.0

Abstract

According to recent studies, leucyl-tRNA synthetase (LRS) acts as a leucine sensor and modulates the activation of the mammalian target of rapamycin complex 1 (mTORC1) activation. Because overactive mTORC1 is associated with several diseases, including colon cancer, LRS-targeted mTORC1 inhibitors represent a potential option for anti-cancer therapy. In this work, we developed a series of simplified leucyladenylate sulfamate analogues that contain the N-(3-chloro-4-fluorophenyl)quinazolin-4-amine moiety to replace the adenine group. We identified several compounds with comparable activity to previously reported inhibitors and exhibited selective mTORC1 inhibition and anti-cancer activity. This study further supports the hypothesis that LRS is a promising target to modulate the mTORC1 pathway.

Knowledge Graph

Similar Paper

Discovery of novel leucyladenylate sulfamate surrogates as leucyl-tRNA synthetase (LRS)-targeted mammalian target of rapamycin complex 1 (mTORC1) inhibitors
Bioorganic & Medicinal Chemistry 2018.0
Discovery of simplified leucyladenylate sulfamates as novel leucyl-tRNA synthetase (LRS)-targeted mammalian target of rapamycin complex 1 (mTORC1) inhibitors
Bioorganic & Medicinal Chemistry 2017.0
Discovery of Leucyladenylate Sulfamates as Novel Leucyl-tRNA Synthetase (LRS)-Targeted Mammalian Target of Rapamycin Complex 1 (mTORC1) Inhibitors
Journal of Medicinal Chemistry 2016.0
Discovery of (S)-4-isobutyloxazolidin-2-one as a novel leucyl-tRNA synthetase (LRS)-targeted mTORC1 inhibitor
Bioorganic & Medicinal Chemistry Letters 2016.0
Synthesis and structure-activity studies of novel anhydrohexitol-based Leucyl-tRNA synthetase inhibitors
European Journal of Medicinal Chemistry 2021.0
Discovery of potent anti-tuberculosis agents targeting leucyl-tRNA synthetase
Bioorganic & Medicinal Chemistry 2016.0
Discovery of benzhydrol-oxaborole derivatives as Streptococcus pneumoniae leucyl-tRNA synthetase inhibitors
Bioorganic & Medicinal Chemistry 2021.0
Design and synthesis of N-(3-sulfamoylphenyl)amides as Trypanosoma brucei leucyl-tRNA synthetase inhibitors
European Journal of Medicinal Chemistry 2021.0
Design and synthesis of α-phenoxy-N-sulfonylphenyl acetamides as Trypanosoma brucei Leucyl-tRNA synthetase inhibitors
European Journal of Medicinal Chemistry 2020.0
Design, Synthesis, and Structure−Activity Relationship of Trypanosoma brucei Leucyl-tRNA Synthetase Inhibitors as Antitrypanosomal Agents
Journal of Medicinal Chemistry 2011.0