Discovery and Lead Optimization of Atropisomer D1 Agonists with Reduced Desensitization

Journal of Medicinal Chemistry
2018.0

Abstract

The discovery of D1 subtype-selective agonists with drug-like properties has been an enduring challenge for the greater part of 40 years. All known D1-selective agonists are catecholamines that bring about receptor desensitization and undergo rapid metabolism, thus limiting their utility as a therapeutic for chronic illness such as schizophrenia and Parkinson's disease. Our high-throughput screening efforts on D1 yielded a single non-catecholamine hit PF-4211 (6) that was developed into a series of potent D1 receptor agonist leads with high oral bioavailability and CNS penetration. An important structural feature of this series is the locked biaryl ring system resulting in atropisomerism. Disclosed herein is a summary of our hit-to-lead efforts on this series of D1 activators culminating in the discovery of atropisomer 31 (PF-06256142), a potent and selective orthosteric agonist of the D1 receptor that has reduced receptor desensitization relative to dopamine and other catechol-containing agonists.

Knowledge Graph

Similar Paper

Discovery and Lead Optimization of Atropisomer D1 Agonists with Reduced Desensitization
Journal of Medicinal Chemistry 2018.0
Synthesis and Pharmacological Evaluation of Noncatechol G Protein Biased and Unbiased Dopamine D1 Receptor Agonists
ACS Medicinal Chemistry Letters 2019.0
Synthesis and SAR study of a novel series of dopamine receptor agonists
Bioorganic & Medicinal Chemistry 2014.0
A Structure–Activity Analysis of Biased Agonism at the Dopamine D2 Receptor
Journal of Medicinal Chemistry 2013.0
Discovery of dopamine D4 receptor antagonists with planar chirality
Bioorganic & Medicinal Chemistry 2013.0
Discovery, Optimization, and Characterization of ML417: A Novel and Highly Selective D<sub>3</sub> Dopamine Receptor Agonist
Journal of Medicinal Chemistry 2020.0
Trans-10,11-dihydroxy-5,6,6a,7,8,12b-hexahydrobenzo[a]phenanthridine: a highly potent selective dopamine D1 full agonist
Journal of Medicinal Chemistry 1990.0
Conjugated Enynes as Nonaromatic Catechol Bioisosteres:  Synthesis, Binding Experiments, and Computational Studies of Novel Dopamine Receptor Agonists Recognizing Preferentially the D<sub>3</sub>Subtype
Journal of Medicinal Chemistry 2000.0
1-(2′-Bromobenzyl)-6,7-dihydroxy-N-methyl-tetrahydroisoquinoline and 1,2-Demethyl-nuciferine as Agonists in Human D<sub>2</sub> Dopamine Receptors
Journal of Natural Products 2020.0
trans-2,3-Dihydroxy-6a,7,8,12b-tetrahydro-6H-chromeno[3,4-c]isoquinoline:  Synthesis, Resolution, and Preliminary Pharmacological Characterization of a New Dopamine D<sub>1</sub>Receptor Full Agonist
Journal of Medicinal Chemistry 2006.0