4-(Phenoxy) and 4-(benzyloxy)benzamides as potent and selective inhibitors of mono-ADP-ribosyltransferase PARP10/ARTD10

European Journal of Medicinal Chemistry
2018.0

Abstract

Human Diphtheria toxin-like ADP-ribosyltranferases (ARTD) 10 is an enzyme carrying out mono-ADP-ribosylation of a range of cellular proteins and affecting their activities. It shuttles between cytoplasm and nucleus and influences signaling events in both compartments, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling and S phase DNA repair. Furthermore, overexpression of ARTD10 induces cell death. We recently reported on the discovery of a hit compound, OUL35 (compound 1), with 330 nM potency and remarkable selectivity towards ARTD10 over other enzymes in the human protein family. Here we aimed at establishing a structure-activity relationship of the OUL35 scaffold, by evaluating an array of 4-phenoxybenzamide derivatives. By exploring modifications on the linker between the aromatic rings, we identified also a 4-(benzyloxy)benzamide derivative, compound 32, which is potent (IC50 = 230 nM) and selective, and like OUL35 was able to rescue HeLa cells from ARTD10-induced cell death. Evaluation of an enlarged series of derivatives produced detailed knowledge on the structural requirements for ARTD10 inhibition and allowed the discovery of further tool compounds with submicromolar cellular potency that will help in understanding the roles of ARTD10 in biological systems.

Knowledge Graph

Similar Paper

4-(Phenoxy) and 4-(benzyloxy)benzamides as potent and selective inhibitors of mono-ADP-ribosyltransferase PARP10/ARTD10
European Journal of Medicinal Chemistry 2018.0
Rational Design of Cell-Active Inhibitors of PARP10
ACS Medicinal Chemistry Letters 2019.0
Discovery of 2-substituted 1 H -benzo[ d ]immidazole-4-carboxamide derivatives as novel poly(ADP-ribose)polymerase-1 inhibitors with in vivo anti-tumor activity
European Journal of Medicinal Chemistry 2017.0
Medicinal Chemistry Perspective on Targeting Mono-ADP-Ribosylating PARPs with Small Molecules
Journal of Medicinal Chemistry 2022.0
The discovery and synthesis of novel adenosine substituted 2,3-dihydro-1H-isoindol-1-ones: potent inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1)
Bioorganic & Medicinal Chemistry Letters 2004.0
Resistance-Modifying Agents. 9. Synthesis and Biological Properties of Benzimidazole Inhibitors of the DNA Repair Enzyme Poly(ADP-ribose) Polymerase
Journal of Medicinal Chemistry 2000.0
Synthesis and Evaluation of a New Generation of Orally Efficacious Benzimidazole-Based Poly(ADP-ribose) Polymerase-1 (PARP-1) Inhibitors as Anticancer Agents
Journal of Medicinal Chemistry 2009.0
Discovery of novel benzo[b][1,4]oxazin-3(4H)-ones as poly(ADP-ribose)polymerase inhibitors
Bioorganic & Medicinal Chemistry Letters 2013.0
Design, synthesis, and bioactivity study on Lissodendrins B derivatives as PARP1 inhibitor
Bioorganic & Medicinal Chemistry 2022.0
Design, Synthesis, and Evaluation of 3,4-Dihydro-2H-[1,4]diazepino[6,7,1-hi]indol-1-ones as Inhibitors of Poly(ADP-Ribose) Polymerase
Journal of Medicinal Chemistry 2004.0