Development of Dihydrodibenzooxepine Peroxisome Proliferator-Activated Receptor (PPAR) Gamma Ligands of a Novel Binding Mode as Anticancer Agents: Effective Mimicry of Chiral Structures by Olefinic E/Z-Isomers

Journal of Medicinal Chemistry
2018.0

Abstract

A novel class of PPARγ ligand 1 (EC50 = 197 nM) with a dibenzoazepin scaffold was identified through high-throughput screening campaign. To avoid the synthetically troublesome chiral center of 1, its conformational analysis using the MacroModel was conducted, focusing on conformational flip of the tricyclic ring and the conformational restriction by the methyl group at the chiral center. On the basis of this analysis, scaffold hopping of dibenzoazepine into dibenzo[ b, e]oxepine by replacing the chiral structures with the corresponding olefinic E/ Z isomers was performed. Consequently, dibenzo[ b, e]oxepine scaffold 9 was developed showing extremely potent PPARγ reporter activity (EC50 = 2.4 nM, efficacy = 9.5%) as well as differentiation-inducing activity against a gastric cancer cell line MKN-45 that was more potent than any other well-known PPARγ agonists in vitro (94% at 30 nM). The X-ray crystal structure analysis of 9 complexed with PPARγ showed that it had a unique binding mode to PPARγ ligand-binding domain that differed from that of any other PPARγ agonists identified thus far.

Knowledge Graph

Similar Paper

Development of Dihydrodibenzooxepine Peroxisome Proliferator-Activated Receptor (PPAR) Gamma Ligands of a Novel Binding Mode as Anticancer Agents: Effective Mimicry of Chiral Structures by Olefinic E/Z-Isomers
Journal of Medicinal Chemistry 2018.0
Development of a novel class of peroxisome proliferator-activated receptor (PPAR) gamma ligands as an anticancer agent with a unique binding mode based on a non-thiazolidinedione scaffold
Bioorganic & Medicinal Chemistry 2019.0
Novel Oxazolidinone-Based Peroxisome Proliferator Activated Receptor Agonists: Molecular Modeling, Synthesis, and Biological Evaluation
Journal of Medicinal Chemistry 2015.0
Structure-based identification of novel PPAR gamma ligands
Bioorganic & Medicinal Chemistry Letters 2013.0
Synthesis, Biological Evaluation, and Molecular Modeling Investigation of New Chiral Fibrates with PPARα and PPARγ Agonist Activity
Journal of Medicinal Chemistry 2005.0
Design, synthesis, and biological activity of novel PPARγ ligands based on rosiglitazone and 15d-PGJ2
Bioorganic & Medicinal Chemistry Letters 2005.0
Design, Synthesis, and Structural Analysis of Phenylpropanoic Acid-Type PPARγ-Selective Agonists: Discovery of Reversed Stereochemistry−Activity Relationship
Journal of Medicinal Chemistry 2011.0
Design and synthesis of marine fungal phthalide derivatives as PPAR-γ agonists
Bioorganic & Medicinal Chemistry 2012.0
Design, Synthesis, and Structure−Activity Relationship Studies of Novel 2,4,6-Trisubstituted-5-pyrimidinecarboxylic Acids as Peroxisome Proliferator-Activated Receptor γ (PPARγ) Partial Agonists with Comparable Antidiabetic Efficacy to Rosiglitazone
Journal of Medicinal Chemistry 2010.0
Crystal Structure of the Peroxisome Proliferator-Activated Receptor γ (PPARγ) Ligand Binding Domain Complexed with a Novel Partial Agonist: A New Region of the Hydrophobic Pocket Could Be Exploited for Drug Design
Journal of Medicinal Chemistry 2008.0