Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases

Journal of Medicinal Chemistry
2019.0

Abstract

Polypharmacology is a promising paradigm in modern drug discovery. Herein, we have discovered a series of novel PI3K and HDAC dual inhibitors in which the hydroxamic acid moiety as the zinc binding functional group was introduced to a quinazoline-based PI3K pharmacophore through an appropriate linker. Systematic structure-activity relationship studies resulted in lead compounds 23 and 36 that simultaneously inhibited PI3K and HDAC with nanomolar potencies and demonstrated favorable antiproliferative activities. Compounds 23 and 36 efficiently modulated the expression of p-AKT and Ac-H3, arrested the cell cycle, and induced apoptosis in HCT116 cancer cells. Following pharmacokinetic studies, 23 was further evaluated in HCT116 and HGC-27 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 45.8% (po, 150 mg/kg) and 62.6% (ip, 30 mg/kg), respectively. Overall, this work shows promise in discovering new anticancer therapeutics by the approach of simultaneously targeting PI3K and HDAC pathways with a single molecule.

Knowledge Graph

Similar Paper

Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases
Journal of Medicinal Chemistry 2019.0
Design, Synthesis, and Biological Evaluation of Quinazolin-4-one-Based Hydroxamic Acids as Dual PI3K/HDAC Inhibitors
Journal of Medicinal Chemistry 2020.0
Design, synthesis and biological evaluation of novel pyrazinone derivatives as PI3K/HDAC dual inhibitors
Bioorganic & Medicinal Chemistry 2022.0
Bioevaluation of a dual PI3K/HDAC inhibitor for the treatment of diffuse large B-cell lymphoma
Bioorganic & Medicinal Chemistry Letters 2022.0
Synthesis and investigation of novel 6-(1,2,3-triazol-4-yl)-4-aminoquinazolin derivatives possessing hydroxamic acid moiety for cancer therapy
Bioorganic & Medicinal Chemistry 2017.0
Identification of PI3K/HDAC Dual-targeted inhibitors with subtype selectivity as potential therapeutic agents against solid Tumors: Building HDAC6 potency in a Quinazolinone-based PI3Kδ-selective template
Bioorganic & Medicinal Chemistry 2022.0
Design, Synthesis, and Biological Evaluation of the First c-Met/HDAC Inhibitors Based on Pyridazinone Derivatives
ACS Medicinal Chemistry Letters 2017.0
Design, synthesis and biological evaluation of N-phenylquinazolin-4-amine hybrids as dual inhibitors of VEGFR-2 and HDAC
European Journal of Medicinal Chemistry 2016.0
Design, synthesis and biological evaluation of novel 4-aminoquinazolines as dual target inhibitors of EGFR-PI3Kα
European Journal of Medicinal Chemistry 2018.0
Quinazoline-based hydroxamic acid derivatives as dual histone methylation and deacetylation inhibitors for potential anticancer agents
Bioorganic & Medicinal Chemistry 2022.0