Discovery and development of extreme selective inhibitors of the ITD and D835Y mutant FLT3 kinases

European Journal of Medicinal Chemistry
2019.0

Abstract

Aberrant activation of FMS-like tyrosine receptor kinase 3 (FLT3) is implicated in the pathogenesis of acute myeloid leukemia (AML) in 20-30% of patients. In this study we identified a highly selective (phenylethenyl)quinazoline compound family as novel potent inhibitors of the FLT3-ITD and FLT3-D835Y kinases. Their prominent effects were confirmed by biochemical and cellular proliferation assays followed by mice xenograft studies. Our modelling experiments and the chemical structures of the compounds predict the possibility of covalent inhibition. The most effective compounds triggered apoptosis in FLT3-ITD AML cells but had either weak or no effect in FLT3-independent leukemic and non-leukemic cell lines. Our results strongly suggest that our compounds may become therapeutics in relapsing and refractory AML disease harboring various ITD and tyrosine kinase domain mutations, by their ability to overcome drug resistance.

Knowledge Graph

Similar Paper

Discovery and development of extreme selective inhibitors of the ITD and D835Y mutant FLT3 kinases
European Journal of Medicinal Chemistry 2019.0
Discovery of a highly selective FLT3 inhibitor with specific proliferation inhibition against AML cells harboring FLT3-ITD mutation
European Journal of Medicinal Chemistry 2019.0
Discovery of the selective and efficacious inhibitors of FLT3 mutations
European Journal of Medicinal Chemistry 2018.0
Discovery and structure − activity relationship exploration of pyrazolo[1,5-a]pyrimidine derivatives as potent FLT3-ITD inhibitors
Bioorganic & Medicinal Chemistry 2021.0
Discovery and evaluation of 3-phenyl-1H-5-pyrazolylamine-based derivatives as potent, selective and efficacious inhibitors of FMS-like tyrosine kinase-3 (FLT3)
Bioorganic & Medicinal Chemistry 2011.0
Discovery of N-(4-(6-Acetamidopyrimidin-4-yloxy)phenyl)-2-(2-(trifluoromethyl)phenyl)acetamide (CHMFL-FLT3-335) as a Potent FMS-like Tyrosine Kinase 3 Internal Tandem Duplication (FLT3-ITD) Mutant Selective Inhibitor for Acute Myeloid Leukemia
Journal of Medicinal Chemistry 2019.0
Identification of a potent 5-phenyl-thiazol-2-ylamine-based inhibitor of FLT3 with activity against drug resistance-conferring point mutations
European Journal of Medicinal Chemistry 2015.0
Discovery of a Potent and Selective FLT3 Inhibitor (Z)-N-(5-((5-Fluoro-2-oxoindolin-3-ylidene)methyl)-4-methyl-1H-pyrrol-3-yl)-3-(pyrrolidin-1-yl)propanamide with Improved Drug-like Properties and Superior Efficacy in FLT3-ITD-Positive Acute Myeloid Leukemia
Journal of Medicinal Chemistry 2021.0
Combining structure- and property-based optimization to identify selective FLT3-ITD inhibitors with good antitumor efficacy in AML cell inoculated mouse xenograft model
European Journal of Medicinal Chemistry 2019.0
Discovery of imidazo[1,2-a]pyridine-thiophene derivatives as FLT3 and FLT3 mutants inhibitors for acute myeloid leukemia through structure-based optimization of an NEK2 inhibitor
European Journal of Medicinal Chemistry 2021.0