Bifidenone: Structure–Activity Relationship and Advanced Preclinical Candidate

Journal of Medicinal Chemistry
2018.0

Abstract

Bifidenone is a novel natural tubulin polymerization inhibitor that exhibits antiproliferative activity against a range of human cancer cell lines, making it an attractive candidate for development. A synthetic route was previously developed to alleviate supply constraints arising from its isolation in microgram quantities from a Gabonese tree. Using that previously published route, we present here 42 analogues that were synthesized to examine the structure-activity relationship of bifidenone derivatives. In addition to in vitro cytotoxicity data, data from murine xenograft and pharmacokinetic studies were used to evaluate the analogues. Compounds 45b and 46b were found to demonstrate promising efficacy in murine xenograft experiments, and 46b had significantly more potent in vitro antiproliferative activity against taxane-resistant cell lines compared to that of paclitaxel.

Knowledge Graph

Similar Paper

Bifidenone: Structure–Activity Relationship and Advanced Preclinical Candidate
Journal of Medicinal Chemistry 2018.0
Isolation and Identification of the Novel Tubulin Polymerization Inhibitor Bifidenone
Journal of Natural Products 2017.0
Discovery of Novel Benzimidazole and Indazole Analogues as Tubulin Polymerization Inhibitors with Potent Anticancer Activities
Journal of Medicinal Chemistry 2021.0
Synthesis and Biological Evaluation of 2-(Alkoxycarbonyl)-3-Anilinobenzo[b]thiophenes and Thieno[2,3-b]pyridines as New Potent Anticancer Agents
Journal of Medicinal Chemistry 2013.0
Design, synthesis and biological evaluation of novel macrocyclic bisbibenzyl analogues as tubulin polymerization inhibitors
European Journal of Medicinal Chemistry 2016.0
Design, synthesis, biological evaluation and molecular modeling study of novel macrocyclic bisbibenzyl analogues as antitubulin agents
European Journal of Medicinal Chemistry 2017.0
Optimization of Benzamide Derivatives as Potent and Orally Active Tubulin Inhibitors Targeting the Colchicine Binding Site
Journal of Medicinal Chemistry 2022.0
Synthesis and biological evaluation of novel shikonin-benzo[b]furan derivatives as tubulin polymerization inhibitors targeting the colchicine binding site
European Journal of Medicinal Chemistry 2020.0
10-(4-Phenylpiperazine-1-carbonyl)acridin-9(10H)-ones and related compounds: Synthesis, antiproliferative activity and inhibition of tubulin polymerization
Bioorganic & Medicinal Chemistry Letters 2021.0
Inhibitors and promoters of tubulin polymerization: Synthesis and biological evaluation of chalcones and related dienones as potential anticancer agents
Bioorganic & Medicinal Chemistry 2011.0