Synthesis and biological evaluation of quinazoline derivatives – A SAR study of novel inhibitors of ABCG2

European Journal of Medicinal Chemistry
2019.0

Abstract

Multidrug resistance (MDR) is a major obstacle for effective chemotherapeutic treatment of cancer frequently leading to failure of the therapy. MDR is often associated with the overexpression of ABC transport proteins like ABCB1 or ABCG2 which efflux harmful substances out of cells at the cost of ATP hydrolysis. One way to overcome MDR is to apply potent inhibitors of ABC transporters to restore the sensitivity of the cells toward cytostatic agents. This study focusses on the synthesis and evaluation of novel 2,4-disubstituted quinazoline derivatives regarding the structure-activity-relationship (SAR), their ability to reverse MDR and their mode of interaction with ABCG2. Hence, the inhibitory potency and selectivity toward ABCG2 was determined. Moreover, the intrinsic cytotoxicity and the reversal of MDR were investigated. Interaction type studies with the substrate Hoechst 33342 and conformational analyses of ABCG2 with 5D3 monoclonal antibody were performed for a better understanding of the underlying mechanisms. In our study we could further enhance the inhibitory effect against ABCG2 (compound 31, IC<sub>50</sub>: 55 nM) and identify the structural features that are crucial for inhibitory potency, the impact on transport activity and binding to the protein.

Knowledge Graph

Similar Paper

Synthesis and biological evaluation of quinazoline derivatives – A SAR study of novel inhibitors of ABCG2
European Journal of Medicinal Chemistry 2019.0
Synthesis and Biological Evaluation of 4-Anilino-quinazolines and -quinolines as Inhibitors of Breast Cancer Resistance Protein (ABCG2)
Journal of Medicinal Chemistry 2016.0
Synthesis and biological investigation of 2,4-substituted quinazolines as highly potent inhibitors of breast cancer resistance protein (ABCG2)
European Journal of Medicinal Chemistry 2017.0
4-Anilino-2-pyridylquinazolines and -pyrimidines as Highly Potent and Nontoxic Inhibitors of Breast Cancer Resistance Protein (ABCG2)
Journal of Medicinal Chemistry 2017.0
Superior Pyrimidine Derivatives as Selective ABCG2 Inhibitors and Broad-Spectrum ABCB1, ABCC1, and ABCG2 Antagonists
Journal of Medicinal Chemistry 2020.0
The combination of quinazoline and chalcone moieties leads to novel potent heterodimeric modulators of breast cancer resistance protein (BCRP/ABCG2)
European Journal of Medicinal Chemistry 2016.0
Synthesis and primary evaluation of quinoxalinone derivatives as potent modulators of multidrug resistance
Medicinal Chemistry Research 2009.0
Pyrimidine: A promising scaffold for optimization to develop the inhibitors of ABC transporters
European Journal of Medicinal Chemistry 2020.0
Discovery of substituted 1,4-dihydroquinolines as novel class of ABCB1 modulators
Bioorganic &amp; Medicinal Chemistry 2015.0
Synthesis and Investigation of Tetrahydro-β-carboline Derivatives as Inhibitors of the Breast Cancer Resistance Protein (ABCG2)
Journal of Medicinal Chemistry 2016.0