Application of the concept of oxime library screening by mass spectrometry (MS) binding assays to pyrrolidine-3-carboxylic acid derivatives as potential inhibitors of γ-aminobutyric acid transporter 1 (GAT1)

Bioorganic & Medicinal Chemistry
2019.0

Abstract

In the present study, the concept of oxime library screening by MS Binding Assays was successfully extended to N-substituted lipophilic pyrrolidine-3-carboxylic acid derivatives in the pursuit of varying the amino acid motif in order to identify new inhibitors for GAT1 and to broaden structure-activity-relationships for this target, the most abundant GABA transporter in the central nervous system. For the screening, 28 different oxime sub-libraries were employed that were generated by simple condensation reaction of an excess of pyrrolidine-3-carboxylic acid derivatives carrying a hydroxylamine functionality with various sub-libraries each assembled of eight aldehydes with broadly varying chemical structures and functionalities. The compounds responsible for the activity of an oxime sub-library were identified by deconvolution experiments performed by employing single oximes. Binding affinities of the oxime hits were confirmed in full-scale competitive MS Binding Assays. Thereby, oxime derivatives with a 1,1'-biphenyl moiety were found as the first inhibitors of mGAT1 comprising a pyrrolidine-3-carboxylic acid motif with affinities in the submicromolar range.

Knowledge Graph

Similar Paper

Application of the concept of oxime library screening by mass spectrometry (MS) binding assays to pyrrolidine-3-carboxylic acid derivatives as potential inhibitors of γ-aminobutyric acid transporter 1 (GAT1)
Bioorganic & Medicinal Chemistry 2019.0
Screening oxime libraries by means of mass spectrometry (MS) binding assays: Identification of new highly potent inhibitors to optimized inhibitors γ-aminobutyric acid transporter 1
Bioorganic & Medicinal Chemistry 2019.0
Novel Allosteric Ligands of γ-Aminobutyric Acid Transporter 1 (GAT1) by MS Based Screening of Pseudostatic Hydrazone Libraries
Journal of Medicinal Chemistry 2018.0
Focused Pseudostatic Hydrazone Libraries Screened by Mass Spectrometry Binding Assay: Optimizing Affinities toward γ-Aminobutyric Acid Transporter 1
Journal of Medicinal Chemistry 2013.0
Azetidine derivatives as novel γ-aminobutyric acid uptake inhibitors: Synthesis, biological evaluation, and structure–activity relationship
European Journal of Medicinal Chemistry 2010.0
Design, synthesis and SAR studies of GABA uptake inhibitors derived from 2-substituted pyrrolidine-2-yl-acetic acids
Bioorganic & Medicinal Chemistry 2015.0
Synthesis of N-substituted acyclic β-amino acids and their investigation as GABA uptake inhibitors
European Journal of Medicinal Chemistry 2013.0
Aminomethyltetrazoles as potential inhibitors of the γ-aminobutyric acid transporters mGAT1–mGAT4: Synthesis and biological evaluation
Bioorganic & Medicinal Chemistry 2011.0
Synthesis and biological evaluation of aminomethylphenol derivatives as inhibitors of the murine GABA transporters mGAT1–mGAT4
European Journal of Medicinal Chemistry 2008.0
Design, Synthesis and Evaluation of Substituted Triarylnipecotic Acid Derivatives as GABA Uptake Inhibitors: Identification of a Ligand with Moderate Affinity and Selectivity for the Cloned Human GABA Transporter GAT-3
Journal of Medicinal Chemistry 1994.0