Imidazo[2,1-a]isoindole scaffold as an uncharted structure active on Leishmania donovani

European Journal of Medicinal Chemistry
2019.0

Abstract

The human protozoan parasites Leishmania donovani and L. infantum are the causative agents of visceral leishmaniasis, as such, responsible for approximately 30,000 deaths annually. The available chemotherapeutic treatments are reduced to a few drugs whose effectiveness is limited by rising drug resistance/therapeutic failure, and noxious side-effects. Therefore, new therapeutic hits are needed. Compounds displaying the imidazo[2,1-a]isoindole skeleton have shown antichagasic, anti-HIV, antimalarial and anorectic activities. Here, we report the leishmanicidal activity of thirty one imidazo[2,1-a]isoindol-5-ol derivatives on promastigotes and intracellular amastigotes of L. donovani. Eight out of thirty one assayed compounds showed EC<sub>50</sub> values ranging between 1 and 2 μM with selectivity indexes from 29 to 69 on infected THP-1 cells. Six compounds were selected for further elucidation of their leishmanicidal mechanism. In this regard, compound 29, the imidazoisoindolol with the highest activity on intracellular amastigotes, induced an early decrease of intracellular ATP levels, as well as mitochondrial depolarization, together with a partial plasma membrane destructuration, as assessed by transmission electron microscopy. Consequently, the inhibition of the energy metabolism of Leishmania plays an important role in the leishmanicidal mechanism of this compound, even when other additional targets cannot be ruled out. In all, the results supported the inclusion of the imidazoisoindole scaffold for the development of new leishmanicidal drugs.

Knowledge Graph

Similar Paper

Imidazo[2,1-a]isoindole scaffold as an uncharted structure active on Leishmania donovani
European Journal of Medicinal Chemistry 2019.0
Targeting the human parasite Leishmania donovani: Discovery of a new promising anti-infectious pharmacophore in 3-nitroimidazo[1,2-a]pyridine series
Bioorganic &amp; Medicinal Chemistry 2013.0
Hit-to-lead optimization of novel phenyl imidazole carboxamides that are active against Leishmania donovani
European Journal of Medicinal Chemistry 2022.0
Synthesis, Biological Evaluation, Structure–Activity Relationship, and Mechanism of Action Studies of Quinoline–Metronidazole Derivatives Against Experimental Visceral Leishmaniasis
Journal of Medicinal Chemistry 2019.0
Discovery and Pharmacological Studies of 4-Hydroxyphenyl-Derived Phosphonium Salts Active in a Mouse Model of Visceral Leishmaniasis
Journal of Medicinal Chemistry 2019.0
4-Aminoquinoline-based compounds as antileishmanial agents that inhibit the energy metabolism of Leishmania
European Journal of Medicinal Chemistry 2019.0
Synthesis and biological evaluation of 2,3-dihydroimidazo[1,2-a]benzimidazole derivatives against Leishmania donovani and Trypanosoma cruzi
European Journal of Medicinal Chemistry 2014.0
Synthesis and biological evaluation of 2-acetamidothiophene-3-carboxamide derivatives against Leishmania donovani
Med. Chem. Commun. 2013.0
Synthesis and biological evaluation of new [1,2,4]triazino[5,6-b]indol-3-ylthio-1,3,5-triazines and [1,2,4]triazino[5,6-b]indol-3-ylthio-pyrimidines against Leishmania donovani
European Journal of Medicinal Chemistry 2010.0
Chemotherapy of leishmaniasis. Part XI: Synthesis and bioevaluation of novel isoxazole containing heteroretinoid and its amide derivatives
Bioorganic &amp; Medicinal Chemistry Letters 2012.0