Rapid generation of novel benzoic acid–based xanthine derivatives as highly potent, selective and long acting DPP-4 inhibitors: Scaffold-hopping and prodrug study

European Journal of Medicinal Chemistry
2019.0

Abstract

A series of novel xanthine derivatives 2a-l incorporating benzoic acid moieties were rapidly generated by using strategy of scaffold-hopping from our previously reported scaffold uracil to xanthine, a scaffold of approved drug linagliptin. After systematic structure-activity relationship (SAR) study around benzoic acid moieties, 5 novel DPP-4 inhibitors with low picomolar potency range (IC<sub>50</sub> < 1 nM) and excellent selectivity against various DPP-4 homologues were identified, in which the best one, compound 2f, with the IC<sub>50</sub> value of 0.1 nM for DPP-4, showed 22-fold improvement in inhibitory activity compared to lead compound uracil 1, its activity was 45-fold more potent than alogliptin. 2e, 2f, 2i and 2k were selected for pharmacokinetic evaluation, and 2f and 2i showed the better pharmacokinetic profiles after iv administration, but poor oral bioavailability. To improve the oral pharmacokinetic profile, prodrug design approach was performed around 2f and 2i. Esters of 2f and 2i were synthesized and evaluated for stability, toxicity and pharmacokinetics. Compound 3e, the methyl ester of compound 2f, was identified to demonstrate good stability, low toxicity and improved oral bioavailability, with 3-fold higher blood concentration compared to 2f in rats. The following in vivo evaluations revealed 3e provided a sustained pharmacodynamics effect for 48h, and robustly improved glucose tolerance in normal ICR and db/db mice in dose-dependent manner. Chronic treatments investigations demonstrated that 3e achieved more beneficial effects on fasting blood glucose levels and glucose tolerance than alogliptin in type 2 diabetic db/db mice. The overall results have shown that compound 3e has the potential to efficacious, safety and long-acting treatment for T2DM.

Knowledge Graph

Similar Paper

Rapid generation of novel benzoic acid–based xanthine derivatives as highly potent, selective and long acting DPP-4 inhibitors: Scaffold-hopping and prodrug study
European Journal of Medicinal Chemistry 2019.0
Identification of novel uracil derivatives incorporating benzoic acid moieties as highly potent Dipeptidyl Peptidase-IV inhibitors
Bioorganic &amp; Medicinal Chemistry 2019.0
Identification and structure–activity relationship exploration of uracil-based benzoic acid and ester derivatives as novel dipeptidyl Peptidase-4 inhibitors for the treatment of type 2 diabetes mellitus
European Journal of Medicinal Chemistry 2021.0
Surrogating and redirection of pyrazolo[1,5- a ]pyrimidin-7(4 H )-one core, a novel class of potent and selective DPP-4 inhibitors
Bioorganic &amp; Medicinal Chemistry 2018.0
Design, synthesis and biological evaluation of novel pyrimidinedione derivatives as DPP-4 inhibitors
Bioorganic &amp; Medicinal Chemistry Letters 2018.0
Discovery of potent, selective, and orally bioavailable quinoline-based dipeptidyl peptidase IV inhibitors targeting Lys554
Bioorganic &amp; Medicinal Chemistry 2011.0
Non-competitive and selective dipeptidyl peptidase IV inhibitors with phenethylphenylphthalimide skeleton derived from thalidomide-related α-glucosidase inhibitors and liver X receptor antagonists
Bioorganic &amp; Medicinal Chemistry Letters 2011.0
Nonpeptide small-molecular inhibitors of dipeptidyl peptidase IV: N-phenylphthalimide analogs
Bioorganic &amp; Medicinal Chemistry Letters 1999.0
Design and synthesis of novel xanthone-triazole derivatives as potential antidiabetic agents: α-Glucosidase inhibition and glucose uptake promotion
European Journal of Medicinal Chemistry 2019.0
Synthesis of antihyperglycemic, α-glucosidase inhibitory, and DPPH free radical scavenging furanochalcones
Medicinal Chemistry Research 2012.0