Synthesis and evaluation of new quinazolin-4(3H)-one derivatives as potent antibacterial agents against multidrug resistant Staphylococcus aureus and Mycobacterium tuberculosis

European Journal of Medicinal Chemistry
2019.0

Abstract

Staphylococcus aureus and Mycobacterium tuberculosis are major causative agents responsible for serious nosocomial and community-acquired infections impacting healthcare systems globally. Over several decades, these pathogens have developed resistance to multiple antibiotics significantly affecting morbidity and mortality. Thus, these recalcitrant pathogens are amongst the most formidable microbial pathogens for which international healthcare agencies have mandated active identification and development of new antibacterial agents for chemotherapeutic intervention. In our present work, a series of new quinazolin-4(3H)-one derivatives were designed, synthesized and evaluated for their antibacterial activity against ESKAP pathogens and pathogenic mycobacteria. The experiments revealed that 4'c, 4'e, 4'f and 4'h displayed selective and potent inhibitory activity against Staphylococcus aureus with MIC values ranging from 0.03-0.25 μg/mL. Furthermore, compounds 4'c and 4'e were found to be benign to Vero cells (CC<sub>50</sub> = >5 μg/mL) and displayed promising selectivity index (SI) > 167 and > 83.4 respectively. Additionally, 4'c and 4'e demonstrated equipotent MIC against multiple drug-resistant strains of S. aureus including VRSA, concentration dependent bactericidal activity against S. aureus and synergized with FDA approved drugs. Moreover, compound 4'c exhibited more potent activity in reducing the biofilm and exhibited a PAE of ∼2 h at 10X MIC which is comparable to levofloxacin and vancomycin. In vivo efficacy of 4'c in murine neutropenic thigh infection model revealed that 4'c caused a similar reduction in cfu as vancomycin. Gratifyingly, compounds 4d, 4e, 9a, 9b, 14a, 4'e and 4'f also exhibited anti-mycobacterial activity with MIC values in the range of 2-16 μg/mL. In addition, the compounds were found to be less toxic to Vero cells (CC<sub>50</sub> = 12.5->100 μg/mL), thus displaying a favourable selectivity index. The interesting results obtained here suggest the potential utilization of these new quinazolin-4(3H)-one derivatives as promising antibacterial agents for treating MDR-Staphylococcal and mycobacterial infections.

Knowledge Graph

Similar Paper

Synthesis and evaluation of new quinazolin-4(3H)-one derivatives as potent antibacterial agents against multidrug resistant Staphylococcus aureus and Mycobacterium tuberculosis
European Journal of Medicinal Chemistry 2019.0
Synthesis of 1,2,3-triazole linked 4(3H)-Quinazolinones as potent antibacterial agents against multidrug-resistant Staphylococcus aureus
European Journal of Medicinal Chemistry 2018.0
Synthesis and evaluation of new quinazoline-benzimidazole hybrids as potent anti-microbial agents against multidrug resistant Staphylococcus aureus and Mycobacterium tuberculosis
European Journal of Medicinal Chemistry 2021.0
Design and synthesis of novel quinoxaline derivatives as potential candidates for treatment of multidrug-resistant and latent tuberculosis
Bioorganic &amp; Medicinal Chemistry Letters 2016.0
Synthesis and evaluation of 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(4-(2-(4-substitutedpiperazin-1-yl)acetyl)piperazin-1-yl)quinoline-3-carboxylic acid derivatives as anti-tubercular and antibacterial agents
European Journal of Medicinal Chemistry 2014.0
Antibacterial Activity of a Series of N<sup>2</sup>,N<sup>4</sup>-Disubstituted Quinazoline-2,4-diamines
Journal of Medicinal Chemistry 2014.0
Synthesis, identification and in vitro biological evaluation of some novel quinoline incorporated 1,3-thiazinan-4-one derivatives
Bioorganic &amp; Medicinal Chemistry Letters 2017.0
Synthesis and biological evaluation of tetrahydroisoquinoline-derived antibacterial compounds
Bioorganic &amp; Medicinal Chemistry 2022.0
New 1,3-oxazolo[4,5-c]quinoline derivatives: Synthesis and evaluation of antibacterial and antituberculosis properties
European Journal of Medicinal Chemistry 2010.0
Synthesis of novel 4-thiazolidione derivatives as antibacterial agents against drug-resistant Staphylococcus epidermidis
Medicinal Chemistry Research 2013.0