Five-Membered N-Heterocyclic Scaffolds as Novel Amino Bioisosteres at γ-Aminobutyric Acid (GABA) Type A Receptors and GABA Transporters

Journal of Medicinal Chemistry
2019.0

Abstract

Given the heterogeneity within the γ-aminobutyric acid (GABA) receptor and transporter families, a detailed insight into the pharmacology is still relatively sparse. To enable studies of the physiological roles governed by specific receptor and transporter subtypes, a series of GABA analogues comprising five-membered nitrogen- and sulfur-containing heterocycles as amine bioisosteres were synthesized and pharmacologically characterized at native and selected recombinant GABAA receptors and GABA transporters. The dihydrothiazole and imidazoline analogues, 5-7, displayed moderate GAT activities and GABAA receptor binding affinities in the mid-nanomolar range ( Ki, 90-450 nM). Moreover, they exhibited full and equipotent agonist activity compared to GABA at GABAA-αβγ receptors but somewhat lower potency as partial agonists at the GABAA-ρ1 receptor. Stereoselectivity was observed for compounds 4 and 7 for the GABAA-αβγ receptors but not the GABAA-ρ1 receptor. This study illustrates how subtle differences in these novel amino GABA bioisosteres result in diverse pharmacological profiles in terms of selectivity and efficacy.

Knowledge Graph

Similar Paper

Five-Membered N-Heterocyclic Scaffolds as Novel Amino Bioisosteres at γ-Aminobutyric Acid (GABA) Type A Receptors and GABA Transporters
Journal of Medicinal Chemistry 2019.0
Hydroxy-1,2,5-oxadiazolyl Moiety as Bioisoster of the Carboxy Function. Synthesis, Ionization Constants, and Pharmacological Characterization of γ-Aminobutyric Acid (GABA) Related Compounds
Journal of Medicinal Chemistry 2006.0
Bioisosteric determinants for subtype selectivity of ligands for heteromeric GABAA receptors
Bioorganic & Medicinal Chemistry Letters 2001.0
5-Substituted Imidazole-4-acetic Acid Analogues:  Synthesis, Modeling, and Pharmacological Characterization of a Series of Novel γ-Aminobutyric Acid<sub>C</sub>Receptor Agonists
Journal of Medicinal Chemistry 2007.0
Synthesis and Biological Evaluation of 4-(Aminomethyl)-1-hydroxypyrazole Analogues of Muscimol as γ-Aminobutyric Acid<sub>A</sub> Receptor Agonists
Journal of Medicinal Chemistry 2013.0
Novel γ-Aminobutyric Acid ρ<sub>1</sub>Receptor Antagonists; Synthesis, Pharmacological Activity and Structure−Activity Relationships
Journal of Medicinal Chemistry 2008.0
Partial GABAA Receptor Agonists. Synthesis and in Vitro Pharmacology of a Series of Nonannulated Analogs of 4,5,6,7-Tetrahydroisoxazolo[4,5-c]pyridin-3-ol
Journal of Medicinal Chemistry 1995.0
Synthesis and pharmacological evaluation of 6-aminonicotinic acid analogues as novel GABAA receptor agonists
European Journal of Medicinal Chemistry 2014.0
A Novel Class of Potent 3-Isoxazolol GABA<sub>A</sub>Antagonists:  Design, Synthesis, and Pharmacology
Journal of Medicinal Chemistry 2000.0
Synthesis of GABA<sub>A</sub>Receptor Agonists and Evaluation of their α-Subunit Selectivity and Orientation in the GABA Binding Site
Journal of Medicinal Chemistry 2008.0