There is nowadays an urgent need for developing novel generations of antibiotic agents due to the increased resistance of pathogenic bacteria. As a rich reservoir of structurally diverse compounds, plant species hold promise in this regard. Within this framework, we isolated a unique series of antibacterial flavonoids, named balsacones N-U, featuring multiple cinnamyl chains on the flavan skeleton. The structures of these compounds, isolated as racemates, were determined using extensive 1D and 2D NMR analysis in tandem with HRMS. Balsacones N-U along with previously isolated balsacones A-M were evaluated for their antibacterial activity against clinical isolates of methicillin resistant Staphylococcus aureus (MRSA). Several of the tested balsacones were potent anti-MRSA agents showing MIC values in the low micromolar range. Structure-activity relationships study highlighted some important parameters involved in the antibacterial activity of balsacones such as the presence of cinnamyl and cinnamoyl chains at the C-3 and C-8 positions of the flavan skeleton, respectively. These results suggest that balsacones could represent a potential novel class of naturally occurring anti-MRSA agents.