Parvifoline Derivatives as Tubulin Polymerization Inhibitors

Journal of Natural Products
2019.0

Abstract

A series of functionalized sesquiterpenoids derived from benzocyclooctene, including natural parvifoline (1), isoparvifoline (3), epoxyparvifoline (5), epoxyisoparvifoline (7), 8,12-oxyparfivoline (9), 8,14-oxyparvifoline (11), and the respective benzoyl derivatives 2, 4, 6, 8, 10, and 12, were prepared and tested for their inhibitory effect on the in vitro α,β-tubulin polymerization process. The structural analysis and characterization of the new compounds 5-7 and 9-12 were achieved by 1D and 2D NMR spectroscopy, mass spectrometry, and X-ray diffraction analysis of 6, 7, and 9. Preparation of 9 and 12 involved molecular rearrangements of the epoxide group with transannular 1,5-hydride shifts. At 10 μM compounds 1, 5, and 8 inhibited the polymerization of the α,β-tubulin heterodimer by 24%, 49%, and 90% as compared to colchicine. These compounds were subjected to docking analysis that supported their interactions in a colchicine binding site located in the α-tubulin subunit, in the pocket formed by Phe296, Pro298, Pro307, His309, Tyr312, Lys338, Thr340, Ile341, and Gln342. Competitive inhibition assays with colchicine were also performed for the three compounds, which supported their binding at the colchicine secondary site in α-tubulin. Also, evaluations of their cytotoxicity on MCF7 breast carcinoma, HeLa cervix carcinoma, and HCT 116 colon carcinoma cell lines were carried out and showed that 8 is active against the HeLa and HCT 116 cell lines with IC50 3.3 ± 0.2 and 5.0 ± 0.5 μM, respectively.

Knowledge Graph

Similar Paper

Parvifoline Derivatives as Tubulin Polymerization Inhibitors
Journal of Natural Products 2019.0
Design, synthesis and biological evaluation of 2-phenylquinoline-4-carboxamide derivatives as a new class of tubulin polymerization inhibitors
Bioorganic & Medicinal Chemistry 2017.0
Design, synthesis and biological evaluation of (E)-3-(3,4-dihydroxyphenyl)acrylylpiperazine derivatives as a new class of tubulin polymerization inhibitors
Bioorganic & Medicinal Chemistry 2014.0
Synthesis and biological evaluation of a series of podophyllotoxins derivatives as a class of potent antitubulin agents
Bioorganic & Medicinal Chemistry 2012.0
Design, synthesis and biological evaluation of millepachine derivatives as a new class of tubulin polymerization inhibitors
Bioorganic & Medicinal Chemistry 2013.0
Synthesis and biological evaluation of podophyllotoxin congeners as tubulin polymerization inhibitors
Bioorganic & Medicinal Chemistry 2014.0
Synthesis and structure–activity relationships of 5-phenyloxazole-2-carboxylic acid derivatives as novel inhibitors of tubulin polymerization
Bioorganic & Medicinal Chemistry Letters 2021.0
N-Heterocyclic (4-Phenylpiperazin-1-yl)methanones Derived from Phenoxazine and Phenothiazine as Highly Potent Inhibitors of Tubulin Polymerization
Journal of Medicinal Chemistry 2017.0
Design, synthesis, and bioevaluation of pyrazolo[1,5-a]pyrimidine derivatives as tubulin polymerization inhibitors targeting the colchicine binding site with potent anticancer activities
European Journal of Medicinal Chemistry 2020.0
Synthesis, biological evaluation, and molecular docking studies of resveratrol derivatives possessing chalcone moiety as potential antitubulin agents
Bioorganic & Medicinal Chemistry 2011.0