Discovery of Benzenesulfonamide Derivatives as Carbonic Anhydrase Inhibitors with Effective Anticonvulsant Action: Design, Synthesis, and Pharmacological Evaluation

Journal of Medicinal Chemistry
2018.0

Abstract

Two series of novel benzenesulfonamide derivatives were synthesized and evaluated for their human carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity against four isoforms, hCA I, hCA II, hCA VII, and hCA IX. It was found that compounds of both series showed low to medium nanomolar inhibitory potential against all isoforms. Some of these derivatives displayed selective inhibition against the epileptogenesis related isoforms hCA II and VII, within the nanomolar range. These potent hCA II and VII inhibitors were evaluated as anticonvulsant agents against MES and sc-PTZ induced convulsions. These sulfonamides effectively abolished induced seizures in both models. Furthermore, time dependent seizure protection capability of the most potent compound was also evaluated. A long duration of action was displayed, with efficacy up to 6 h after drug administration. The compound appeared as an orally active anticonvulsant agent without showing neurotoxicity in a rotarod test, a nontoxic chemical profile being observed in subacute toxicity study.

Knowledge Graph

Similar Paper

Discovery of Benzenesulfonamide Derivatives as Carbonic Anhydrase Inhibitors with Effective Anticonvulsant Action: Design, Synthesis, and Pharmacological Evaluation
Journal of Medicinal Chemistry 2018.0
Discovery of Benzenesulfonamides with Potent Human Carbonic Anhydrase Inhibitory and Effective Anticonvulsant Action: Design, Synthesis, and Pharmacological Assessment
Journal of Medicinal Chemistry 2017.0
Discovery of potent anti-convulsant carbonic anhydrase inhibitors: Design, synthesis, in vitro and in vivo appraisal
European Journal of Medicinal Chemistry 2018.0
Discovery of Potent Carbonic Anhydrase Inhibitors as Effective Anticonvulsant Agents: Drug Design, Synthesis, and In Vitro and In Vivo Investigations
Journal of Medicinal Chemistry 2021.0
Indanesulfonamides as carbonic anhydrase inhibitors and anticonvulsant agents: Structure–activity relationship and pharmacological evaluation
European Journal of Medicinal Chemistry 2008.0
Anticonvulsant 4-Aminobenzenesulfonamide Derivatives with Branched-Alkylamide Moieties: X-ray Crystallography and Inhibition Studies of Human Carbonic Anhydrase Isoforms I, II, VII, and XIV
Journal of Medicinal Chemistry 2011.0
Carbonic anhydrase inhibitors. Inhibition of isoforms I, II, IV, VA, VII, IX, and XIV with sulfonamides incorporating fructopyranose–thioureido tails
Bioorganic & Medicinal Chemistry Letters 2007.0
Carbonic anhydrase inhibitors. Design of anticonvulsant sulfonamides incorporating indane moieties
Bioorganic & Medicinal Chemistry Letters 2004.0
Novel benzenesulfonamides aryl and arylsulfone conjugates adopting tail/dual tail approaches: Synthesis, carbonic anhydrase inhibitory activity and molecular modeling studies
European Journal of Medicinal Chemistry 2021.0
Carbonic Anhydrase Inhibitors:  Anticonvulsant Sulfonamides Incorporating Valproyl and Other Lipophilic Moieties
Journal of Medicinal Chemistry 2002.0