Design and synthesis of purine connected piperazine derivatives as novel inhibitors of Mycobacterium tuberculosis

Bioorganic & Medicinal Chemistry Letters
2020.0

Abstract

A series of novel purine linked piperazine derivatives were synthesized to identify new, potent inhibitors of Mycobacterium tuberculosis. The compounds were designed to target MurB disrupting the biosynthesis of the peptidoglycan and exert antiproliferative effects. The first series of purine-2,6-dione linked piperazine derivatives were synthesized using an advanced intermediate 1-(3,4-difluorobenzyl)-7-(but-2-ynyl)-3-methyl-8-(piperazin-1-yl)-1H-purine-2,6(3H,7H)-dione hydrochloride (6) which was coupled with varied carboxylic acid chloride derivatives. Following this piperazine linked derivatives were also synthesized from 6 using diverse isocyanate partners. The anti-mycobacterial activity of the analogues was tested againstMycobacterium tuberculosis H37Rv which revealed a cluster of six analogues (11, 24,27, 32, 33 and34), possessed promising activity. In comparison, a set of these new compounds possessed greater potencies relative to current drugs used in the clinic such as Ethambutol. These results were also correlated with computational molecular docking analysis, providing models for strong interactions of the inhibitors with MurB providing a template for the future development of preclinical agents against Mycobacterium tuberculosis.

Knowledge Graph

Similar Paper

Design and synthesis of purine connected piperazine derivatives as novel inhibitors of Mycobacterium tuberculosis
Bioorganic & Medicinal Chemistry Letters 2020.0
Design and synthesis of novel piperazine unit condensed 2,6-diarylpiperidin-4-one derivatives as antituberculosis and antimicrobial agents
Medicinal Chemistry Research 2012.0
Novel amide and sulphonamide derivatives of 6-(piperazin-1-yl)phenanthridine as potent Mycobacterium tuberculosis H37Rv inhibitors
European Journal of Medicinal Chemistry 2015.0
New class of methyl tetrazole based hybrid of (Z)-5-benzylidene-2-(piperazin-1-yl)thiazol-4(%H)-one as potent antitubercular agents
Bioorganic & Medicinal Chemistry Letters 2014.0
Design, synthesis and evaluation of diarylpiperazine derivatives as potent anti-tubercular agents
European Journal of Medicinal Chemistry 2015.0
Design, synthesis and antimycobacterial evaluation of 1-(4-(2-substitutedthiazol-4-yl)phenethyl)-4-(3-(4-substitutedpiperazin-1-yl)alkyl)piperazine hybrid analogues
European Journal of Medicinal Chemistry 2014.0
Synthesis, structural activity relationship and anti-tubercular activity of novel pyrazoline derivatives
European Journal of Medicinal Chemistry 2007.0
Design, Synthesis, and Biological Evaluation of Pyrazolo[1,5-a]pyridine-3-carboxamides as Novel Antitubercular Agents
ACS Medicinal Chemistry Letters 2015.0
Synthesis and evaluation of anti-tubercular activity of 6-(4-substitutedpiperazin-1-yl) phenanthridine analogues
European Journal of Medicinal Chemistry 2014.0
Design, synthesis, andin vitrobiological evaluation of novel benzimidazole tethered allylidenehydrazinylmethylthiazole derivatives as potent inhibitors ofMycobacterium tuberculosis
MedChemComm 2018.0