Design, synthesis, in-vitro, in-vivo and in-silico studies of pyrrolidine-2,5-dione derivatives as multitarget anti-inflammatory agents

European Journal of Medicinal Chemistry
2020.0

Abstract

In recent years, drug discovery paradigm has been shifted from conventional single target inhibition toward multitarget design concept. In current research, we have reported synthesis, in-vitro, in-vivo and acute toxicity determination of N-substituted pyrrolidine-2,5-dione derivatives as multitarget anti-inflammatory agents. We synthesized cycloalkyl, alkyl and aryl carbonyl derivatives by the Michael addition of ketones to N-substituted maleimides using self-assembled three component system as an organocatalyst. Anti-inflammatory potential of the compounds was determined by using different in-vitro assays, like cyclooxygenase-1, cyclooxygenase-2 and 5-lipoxygenase, albumin denaturation and anti-protease assays. Amongst the synthesized compounds, 13a-e series of compounds showed inhibition in low micromolar to submicromolar ranges. These compounds also demonstrated COX-2 selectivity. Compound 13e with IC value 0.98 μM and SI of 31.5 emerged as the most potent inhibitor of COX-2. Based on in-vitro results, in-vivo anti-inflammatory investigations were performed on compounds 3b and 13evia carrageenan induced paw edema test. The possible mode of action of compounds 3b and 13e were ascertained with various mediators like histamine, bradykinin, prostaglandin and leukotriene. In-vivo acute toxicity study showed the safety of synthesized compounds up to 1000 mg/kg dose. The selectivity of the compounds against cyclooxygenase isoforms was supported by docking simulations. Selective COX-2 inhibitors showed significant interactions with the amino acid residues present in additional secondary COX-2 enzyme pocket. Furthermore, in-silico pharmacokinetic predictions confer the drug-like characteristics.

Knowledge Graph

Similar Paper

Design, synthesis, in-vitro, in-vivo and in-silico studies of pyrrolidine-2,5-dione derivatives as multitarget anti-inflammatory agents
European Journal of Medicinal Chemistry 2020.0
Synthesis of novel 3,5,6-trisubstituted 2-pyridone derivatives and evaluation for their anti-inflammatory activity
Bioorganic & Medicinal Chemistry 2020.0
Cyclooxygenase-2 Inhibitors. 1,5-Diarylpyrrol-3-acetic Esters with Enhanced Inhibitory Activity toward Cyclooxygenase-2 and Improved Cyclooxygenase-2/Cyclooxygenase-1 Selectivity
Journal of Medicinal Chemistry 2007.0
Synthesis, in silico docking experiments of new 2-pyrrolidinone derivatives and study of their anti-inflammatory activity
Bioorganic & Medicinal Chemistry 2011.0
Synthesis and biological evaluation of pyridazinone derivatives as selective COX-2 inhibitors and potential anti-inflammatory agents
European Journal of Medicinal Chemistry 2019.0
Design, synthesis, anti-inflammatory activity and molecular docking of potential novel antipyrine and pyrazolone analogs as cyclooxygenase enzyme (COX) inhibitors
Bioorganic & Medicinal Chemistry Letters 2018.0
Synthesis, Biological Evaluation, and Enzyme Docking Simulations of 1,5-Diarylpyrrole-3-Alkoxyethyl Ethers as Selective Cyclooxygenase-2 Inhibitors Endowed with Anti-inflammatory and Antinociceptive Activity
Journal of Medicinal Chemistry 2008.0
Synthesis, biological evaluation, and docking analysis of a novel family of 1-methyl-1H-pyrrole-2,5-diones as highly potent and selective cyclooxygenase-2 (COX-2) inhibitors
Bioorganic & Medicinal Chemistry Letters 2014.0
Design, synthesis, and biological evaluation of substituted hydrazone and pyrazole derivatives as selective COX-2 inhibitors: Molecular docking study
Bioorganic & Medicinal Chemistry 2011.0
Synthesis, anti-inflammatory, analgesic, COX-1/2 inhibition activities and molecular docking study of pyrazoline derivatives
Bioorganic & Medicinal Chemistry 2016.0