New deferiprone derivatives as multi-functional cholinesterase inhibitors: design, synthesis and in vitro evaluation

European Journal of Medicinal Chemistry
2020.0

Abstract

In order to obtain multi-functional molecules for Alzheimer's disease, a series of deferiprone derivatives has been synthesized and evaluated in vitro with the hypothesis that they can restore the cholinergic tone and attenuate the dyshomeostasis of the metals mainly involved in the pathology. These compounds were designed as dual binding site AChE inhibitors: they possess an arylalkylamine moiety connected via an alkyl chain to a 3-hydroxy-4-pyridone fragment, to allow the simultaneous interaction with catalytic active site (CAS) and peripheral anionic site (PAS) of the enzyme. Deferiprone moiety and 2-aminopyridine, 2-aminopyrimidine or 2,4-diaminopyrimidine groups have been incorporated into these compounds, in order to obtain molecules potentially able to chelate bio-metals colocalized in Aβ plaques and involved in the generation of radical species. Synthesized compounds were tested by enzymatic inhibition studies towards EeAChE and eqBChE using Ellman's method. The most potent EeAChE inhibitor is compound 5a, with a K of 788 ± 51 nM, while the most potent eqBChE inhibitors are compounds 12 and 19, with K values of 182 ± 18 nM and 258 ± 25 nM respectively. Selected compounds, among the most potent cholinesterases inhibitors, were able to form complex with iron and in some cases with copper and zinc. Moreover, these compounds were characterized by low toxicity on U-87 MG Cell Line from human brain (glioblastoma astrocytoma).

Knowledge Graph

Similar Paper

New deferiprone derivatives as multi-functional cholinesterase inhibitors: design, synthesis and in vitro evaluation
European Journal of Medicinal Chemistry 2020.0
Design, synthesis and evaluation of flavonoid derivatives as potential multifunctional acetylcholinesterase inhibitors against Alzheimer’s disease
Bioorganic & Medicinal Chemistry Letters 2013.0
Multi-Target-Directed Drug Design Strategy: From a Dual Binding Site Acetylcholinesterase Inhibitor to a Trifunctional Compound against Alzheimer’s Disease
Journal of Medicinal Chemistry 2007.0
Design, synthesis and biological activity of novel donepezil derivatives bearing N -benzyl pyridinium moiety as potent and dual binding site acetylcholinesterase inhibitors
European Journal of Medicinal Chemistry 2017.0
Synthesis, biological evaluation and molecular modeling of new tetrahydroacridine derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease
Bioorganic & Medicinal Chemistry 2015.0
Synthesis, biological evaluation and molecular docking study of novel piperidine and piperazine derivatives as multi-targeted agents to treat Alzheimer’s disease
Bioorganic & Medicinal Chemistry 2015.0
Design and synthesis of thienopyridines as novel templates for acetylcholinesterase inhibitors
Medicinal Chemistry Research 2013.0
Design, Synthesis, and Biological Evaluation of Dual Binding Site Acetylcholinesterase Inhibitors:  New Disease-Modifying Agents for Alzheimer's Disease
Journal of Medicinal Chemistry 2005.0
Design, synthesis, and evaluation of indanone derivatives as acetylcholinesterase inhibitors and metal-chelating agents
Bioorganic & Medicinal Chemistry Letters 2012.0
Rational modification of donepezil as multifunctional acetylcholinesterase inhibitors for the treatment of Alzheimer's disease
European Journal of Medicinal Chemistry 2016.0