Design and synthesis of thiourea-based derivatives as Mycobacterium tuberculosis growth and enoyl acyl carrier protein reductase (InhA) inhibitors

European Journal of Medicinal Chemistry
2020.0

Abstract

Tuberculosis remains the most deadly infectious disease worldwide due to the emergence of drug-resistant strains of Mycobacterium tuberculosis. Hence, there is a great need for more efficient treatment regimens. Herein, we carried out rational molecular modifications on the chemical structure of the urea-based co-crystallized ligand of enoyl acyl carrier protein reductase (InhA) (PDB code: 5OIL). Although this compound fulfills all structural requirements to interact with InhA, it does not inhibit the enzyme effectively. With the aim of improving the inhibition value, we synthesized thiourea-based derivatives by one-pot reaction of the amines with corresponding isothiocyanates. After the structural characterization using H NMR, C NMR, FTIR and HRMS, the obtained compounds were initially tested for their abilities to inhibit Mycobacterium tuberculosis growth. The results revealed that some compounds exhibited promising antitubercular activity, MIC values at 0.78 and 1.56 μg/mL, combined with low cytotoxicity. Moreover, the most active compounds were tested against latent as well as dormant forms of the bacteria utilizing nutrient starvation model and Mycobacterium tuberculosis infected macrophage assay. Enzyme inhibition assay against enoyl-acyl carrier protein reductase identified InhA as the important target of some compounds. Molecular docking studies were performed to correlate InhA inhibition data with in silico results. Finally, theoretical calculations were established to predict the physicochemical properties of the most active compounds.

Knowledge Graph

Similar Paper

Design and synthesis of thiourea-based derivatives as Mycobacterium tuberculosis growth and enoyl acyl carrier protein reductase (InhA) inhibitors
European Journal of Medicinal Chemistry 2020.0
Discovery of hydrazone containing thiadiazoles as Mycobacterium tuberculosis growth and enoyl acyl carrier protein reductase (InhA) inhibitors
European Journal of Medicinal Chemistry 2020.0
Development of 2-(4-oxoquinazolin-3(4H)-yl)acetamide derivatives as novel enoyl-acyl carrier protein reductase (InhA) inhibitors for the treatment of tuberculosis
European Journal of Medicinal Chemistry 2014.0
Synthesis, antimycobacterial screening and ligand-based molecular docking studies on novel pyrrole derivatives bearing pyrazoline, isoxazole and phenyl thiourea moieties
European Journal of Medicinal Chemistry 2016.0
In Silico Driven Design and Synthesis of Rhodanine Derivatives as Novel Antibacterials Targeting the Enoyl Reductase InhA
Journal of Medicinal Chemistry 2016.0
Design, synthesis and biological evaluation of novel triazole, urea and thiourea derivatives of quinoline against Mycobacterium tuberculosis
Bioorganic & Medicinal Chemistry 2009.0
Design and synthesis of 2-(2-isonicotinoylhydrazineylidene)propanamides as InhA inhibitors with high antitubercular activity
European Journal of Medicinal Chemistry 2021.0
Synthesis of carbohydrazides and carboxamides as anti-tubercular agents
European Journal of Medicinal Chemistry 2018.0
Antimycobacterial and anti-inflammatory activities of thiourea derivatives focusing on treatment approaches for severe pulmonary tuberculosis
Bioorganic & Medicinal Chemistry 2022.0
2-(2-Hydrazinyl)thiazole derivatives: Design, synthesis and in vitro antimycobacterial studies
European Journal of Medicinal Chemistry 2013.0