Antikinetoplastid SAR study in 3-nitroimidazopyridine series: Identification of a novel non-genotoxic and potent anti-T. b. brucei hit-compound with improved pharmacokinetic properties

European Journal of Medicinal Chemistry
2020.0

Abstract

To study the antikinetoplastid 3-nitroimidazo[1,2-a]pyridine pharmacophore, a structure-activity relationship study was conducted through the synthesis of 26 original derivatives and their in vitro evaluation on both Leishmania spp and Trypanosoma brucei brucei. This SAR study showed that the antitrypanosomal pharmacophore was less restrictive than the antileishmanial one and highlighted positions 2, 6 and 8 of the imidazopyridine ring as key modulation points. None of the synthesized compounds allowed improvement in antileishmanial activity, compared to previous hit molecules in the series. Nevertheless, compound 8, the best antitrypanosomal molecule in this series (EC = 17 nM, SI = 2650 & E° = -0.6 V), was not only more active than all reference drugs and previous hit molecules in the series but also displayed improved aqueous solubility and better in vitro pharmacokinetic characteristics: good microsomal stability (T > 40 min), moderate albumin binding (77%) and moderate permeability across the blood brain barrier according to a PAMPA assay. Moreover, both micronucleus and comet assays showed that nitroaromatic molecule 8 was not genotoxic in vitro. It was evidenced that bioactivation of molecule 8 was operated by T. b. brucei type 1 nitroreductase, in the same manner as fexinidazole. Finally, a mouse pharmacokinetic study showed that 8 displayed good systemic exposure after both single and repeated oral administrations at 100 mg/kg (NOAEL) and satisfying plasmatic half-life (T = 7.7 h). Thus, molecule 8 appears as a good candidate for initiating a hit to lead drug discovery program.

Knowledge Graph

Similar Paper

Antikinetoplastid SAR study in 3-nitroimidazopyridine series: Identification of a novel non-genotoxic and potent anti-T. b. brucei hit-compound with improved pharmacokinetic properties
European Journal of Medicinal Chemistry 2020.0
8-Alkynyl-3-nitroimidazopyridines display potent antitrypanosomal activity against both T. b. brucei and cruzi
European Journal of Medicinal Chemistry 2020.0
8-Aryl-6-chloro-3-nitro-2-(phenylsulfonylmethyl)imidazo[1,2-a]pyridines as potent antitrypanosomatid molecules bioactivated by type 1 nitroreductases
European Journal of Medicinal Chemistry 2018.0
New 8-Nitroquinolinone Derivative Displaying Submicromolar in Vitro Activities against Both Trypanosoma brucei and cruzi
ACS Medicinal Chemistry Letters 2020.0
Nongenotoxic 3-Nitroimidazo[1,2-a]pyridines Are NTR1 Substrates That Display Potent in Vitro Antileishmanial Activity
ACS Medicinal Chemistry Letters 2019.0
Novel 8-nitroquinolin-2(1H)-ones as NTR-bioactivated antikinetoplastid molecules: Synthesis, electrochemical and SAR study
European Journal of Medicinal Chemistry 2018.0
3-(Oxazolo[4,5-b]pyridin-2-yl)anilides as a novel class of potent inhibitors for the kinetoplastid Trypanosoma brucei, the causative agent for human African trypanosomiasis
European Journal of Medicinal Chemistry 2013.0
1-Aryl-4-nitro-1H-imidazoles, a new promising series for the treatment of human African trypanosomiasis
European Journal of Medicinal Chemistry 2011.0
Assessment of a pretomanid analogue library for African trypanosomiasis: Hit-to-lead studies on 6-substituted 2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]thiazine 8-oxides
Bioorganic & Medicinal Chemistry Letters 2018.0
Targeting the human parasite Leishmania donovani: Discovery of a new promising anti-infectious pharmacophore in 3-nitroimidazo[1,2-a]pyridine series
Bioorganic & Medicinal Chemistry 2013.0