In this paper, we report an efficient one-pot three-component reaction sequences comprising Cu(I)-catalyzed 1,3-dipolar cycloaddition (CuAAC) followed by Cu-catalyzed arylation of resulting 1,2,3-triazole in the presence of ionic liquid [Emim]BF<sub>4</sub> under microwave conditions involving. The newly synthesized derivatives were screened for in vitro antibacterial inhibition potency against both gram +ve and gram -ve strains. Among the tested compounds, 4f exhibited significant inhibition activity with MIC value 3.12 µg/mL against B. subtilis and S. epidermidis which is two-fold higher than the standard ciprofloxacin (6.25 µg/mL) and also displayed equipotent activity to that of the positive control against S. aureus with MIC value 6.25 µg/mL. Conjugates of the series viz. 3f and 4b against S. aureus, and 4e against E. coli have also displayed promising results with MIC values 6.25 µg/mL which is comparable to the ciprofloxacin. Also we report the anti-biofilm profiles for the potent compounds and it was observed from the results that the active derivatives 4b and 4f were not only potent antibacterial agents but also efficient inhibitors of B. subtilis and S. aureus biofilm growth. Furthermore, in silico-ADME and pharmacokinetic profiles demonstrated the druggability of the hybrids.