Metal binding 6-arylthio-3-hydroxypyrimidine-2,4-diones inhibited human cytomegalovirus by targeting the pUL89 endonuclease of the terminase complex

European Journal of Medicinal Chemistry
2021.0

Abstract

The genome packaging of human cytomegalovirus (HCMV) requires a divalent metal-dependent endonuclease activity localized to the C-terminus of pUL89 (pUL89-C), which is reminiscent of RNase H-like enzymes in active site structure and catalytic mechanism. Our previous work has shown that metal-binding small molecules can effectively inhibit pUL89-C while conferring significant antiviral activities. In this report we generated a collection of 43 metal-binding small molecules by repurposing analogs of the 6-arylthio-3-hydroxypyrimidine-2,4-dione chemotype previously synthesized for targeting HIV-1 RNase H, and by chemically synthesizing new N-1 analogs. The analogs were subjected to two parallel screening assays: the pUL89-C biochemical assay and the HCMV antiviral assay. Compounds with significant inhibition from each assay were further tested in a dose-response fashion. Single dose cell viability and PAMPA cell permeability were also conducted and considered in selecting compounds for the dose-response antiviral testing. These assays identified a few analogs displaying low μM inhibition against pUL89-C in the biochemical assay and HCMV replication in the antiviral assay. The target engagement was further evaluated via a thermal shift assay using recombinant pUL89-C and molecular docking. Overall, our current work identified novel inhibitors of pUL89-C with significant antiviral activities and further supports targeting pUL89-C with metal-binding small molecules as an antiviral approach against HCMV.

Knowledge Graph

Similar Paper

Metal binding 6-arylthio-3-hydroxypyrimidine-2,4-diones inhibited human cytomegalovirus by targeting the pUL89 endonuclease of the terminase complex
European Journal of Medicinal Chemistry 2021.0
4,5-Dihydroxypyrimidine Methyl Carboxylates, Carboxylic Acids, and Carboxamides as Inhibitors of Human Cytomegalovirus pUL89 Endonuclease
Journal of Medicinal Chemistry 2022.0
Stereoselective Phosphorylation of Cyclopropavir by pUL97 and Competitive Inhibition by Maribavir
Antimicrobial Agents and Chemotherapy 2010.0
Discovery of a novel series of inhibitors of human cytomegalovirus primase
Bioorganic & Medicinal Chemistry Letters 2006.0
SAR studies on a novel series of human cytomegalovirus primase inhibitors
Bioorganic & Medicinal Chemistry Letters 2007.0
Discovery of a New Family of Inhibitors of Human Cytomegalovirus (HCMV) Based upon Lipophilic Alkyl Furano Pyrimidine Dideoxy Nucleosides:  Action via a Novel Non-Nucleosidic Mechanism
Journal of Medicinal Chemistry 2004.0
The design and development of 2-aryl-2-hydroxy ethylamine substituted 1H,7H-pyrido[1,2,3-de]quinoxaline-6-carboxamides as inhibitors of human cytomegalovirus polymerase
Bioorganic & Medicinal Chemistry Letters 2010.0
Establishment of a Cell-Based Assay for Screening of Compounds Inhibiting Very Early Events in the Cytomegalovirus Replication Cycle and Characterization of a Compound Identified Using the Assay
Antimicrobial Agents and Chemotherapy 2008.0
Validation and Characterization of Five Distinct Novel Inhibitors of Human Cytomegalovirus
Journal of Medicinal Chemistry 2020.0
The synthesis and antiviral properties of (.+-.)-5'-noraristeromycin and related purine carbocyclic nucleosides. A new lead for anti-human cytomegalovirus agent design
Journal of Medicinal Chemistry 1992.0