Discovery of N-(4-(3-isopropyl-2-methyl-2H-indazol-5-yl)pyrimidin-2-yl)-4-(4-methylpiperazin-1-yl)quinazolin-7-amine as a Novel, Potent, and Oral Cyclin-Dependent Kinase Inhibitor against Haematological Malignancies

Journal of Medicinal Chemistry
2021.0

Abstract

Hematologic malignancies (HM) start in blood forming tissue or in the cells of the immune system. Cyclin-dependent kinases (CDKs) regulate cell cycle progression, and some of them control cellular transcription. CDK inhibition can trigger apoptosis and could be particularly useful in hematological malignancies. Herein, we describe our efforts toward the discovery of a novel series of quinazoline derivatives as CDK inhibitors. Intensive structural modifications lead to the identification of compound <b>37d</b> as the most active inhibitors of CDKs 1, 2, 4, 8 and 9 with balancing potency and selectivity against CDKs. Further biological studies revealed that compound <b>37d</b> can arrest the cell cycle and induce apoptosis via activating PARP and caspase 3. More importantly, compound <b>37d</b> showed good antitumor efficacy in multiple HM mice xenograft models with no obvious toxicity. These results indicated that CDK 1, 2, 4, 8, and 9 inhibitors could be potentially used to treat certain hematologic malignancies.

Knowledge Graph

Similar Paper

Discovery of N-(4-(3-isopropyl-2-methyl-2H-indazol-5-yl)pyrimidin-2-yl)-4-(4-methylpiperazin-1-yl)quinazolin-7-amine as a Novel, Potent, and Oral Cyclin-Dependent Kinase Inhibitor against Haematological Malignancies
Journal of Medicinal Chemistry 2021.0
Discovery of 2H-benzo[b][1,4]oxazin-3(4H)-one derivatives as potent and selective CDK9 inhibitors that enable transient target engagement for the treatment of hematologic malignancies
European Journal of Medicinal Chemistry 2022.0
A Novel Pyrazolo[1,5-a]pyrimidine Is a Potent Inhibitor of Cyclin-Dependent Protein Kinases 1, 2, and 9, Which Demonstrates Antitumor Effects in Human Tumor Xenografts Following Oral Administration
Journal of Medicinal Chemistry 2010.0
Indenopyrazoles as Novel Cyclin Dependent Kinase (CDK) Inhibitors
Journal of Medicinal Chemistry 2001.0
Discovery of novel cyclin-dependent kinase (CDK) and histone deacetylase (HDAC) dual inhibitors with potent in vitro and in vivo anticancer activity
European Journal of Medicinal Chemistry 2020.0
5-Substituted 3-isopropyl-7-[4-(2-pyridyl)benzyl]amino-1(2)H-pyrazolo[4,3-d]pyrimidines with anti-proliferative activity as potent and selective inhibitors of cyclin-dependent kinases
European Journal of Medicinal Chemistry 2016.0
Pyrazolo[4,3-d]pyrimidines as new generation of cyclin-dependent kinase inhibitors
Bioorganic &amp; Medicinal Chemistry Letters 2003.0
Discovery of N1-(4-((7-Cyclopentyl-6-(dimethylcarbamoyl)-7H-pyrrolo[2,3-d]pyrimidin-2-yl)amino)phenyl)-N8-hydroxyoctanediamide as a Novel Inhibitor Targeting Cyclin-dependent Kinase 4/9 (CDK4/9) and Histone Deacetlyase1 (HDAC1) against Malignant Cancer
Journal of Medicinal Chemistry 2018.0
Recent advances in the development of cyclin-dependent kinase 7 inhibitors
European Journal of Medicinal Chemistry 2019.0
Design, synthesis, and biological evaluation of 4-benzoylamino-1H-pyrazole-3-carboxamide derivatives as potent CDK2 inhibitors
European Journal of Medicinal Chemistry 2021.0