Cytotoxic T lymphocyte (CTL), a key effector cell in aplastic anemia (AA) immune injury, is shown to be a potential target for AA drug therapy. However, there is no candidate for this target till now. Oriented by the inhibition activity of CTL and macrophage derived nitric oxide (NO), a series of novel sinomenine derivatives on rings A and C are designed, synthesized and screened. Among them, compound 3a demonstrates the best inhibitory activity on CTL with an IC<sub>50</sub> value of 2.3 μM, and a 97.1% inhibiton rate on macrophage NO production without significant cytotoxicity. Further, compound 3a exhibits substantial therapeutic efficacy on immune-mediated BM failure in AA model mice by improving the symptoms of anemia and the function of BM hematopoiesis, and shows more advantages in life quality improving than cyclosporine A (CsA). Its efficacy on AA at least partly comes from targeting on activated cluster of differentiation (CD)8<sup>+</sup> T cell. Additionally, 3a also shows much less toxicity (LD<sub>50</sub> > 10.0 g/kg) than sinomenine (LD<sub>50</sub> = 1.1 g/kg) in preliminary acute toxicity assessment in mice, and has a low risk to inhibit hERG to cause cardiotoxicity. These results indicate that compound 3a merits further investigation for AA treatment by targeting on CTL.