Optimization of TopoIV Potency, ADMET Properties, and hERG Inhibition of 5-Amino-1,3-dioxane-Linked Novel Bacterial Topoisomerase Inhibitors: Identification of a Lead with In Vivo Efficacy against MRSA

Journal of Medicinal Chemistry
2021.0

Abstract

Novel bacterial topoisomerase inhibitors (NBTIs) are among the most promising new antibiotics in preclinical/clinical development. We previously reported dioxane-linked NBTIs with potent antistaphylococcal activity and reduced hERG inhibition, a key safety liability. Herein, polarity-focused optimization enabled the delineation of clear structure-property relationships for both microsomal metabolic stability and hERG inhibition, resulting in the identification of lead compound <b>79</b>. This molecule demonstrates potent antibacterial activity against diverse Gram-positive pathogens, inhibition of both DNA gyrase and topoisomerase IV, a low frequency of resistance, a favorable <i>in vitro</i> cardiovascular safety profile, and <i>in vivo</i> efficacy in a murine model of methicillin-resistant <i>Staphylococcus aureus</i> infection.

Knowledge Graph

Similar Paper

Optimization of TopoIV Potency, ADMET Properties, and hERG Inhibition of 5-Amino-1,3-dioxane-Linked Novel Bacterial Topoisomerase Inhibitors: Identification of a Lead with In Vivo Efficacy against MRSA
Journal of Medicinal Chemistry 2021.0
Synthesis and anti-staphylococcal activity of novel bacterial topoisomerase inhibitors with a 5-amino-1,3-dioxane linker moiety
Bioorganic &amp; Medicinal Chemistry Letters 2018.0
Dioxane-Linked Amide Derivatives as Novel Bacterial Topoisomerase Inhibitors against Gram-Positive Staphylococcus aureus
ACS Medicinal Chemistry Letters 2020.0
1,3-Dioxane-Linked Novel Bacterial Topoisomerase Inhibitors: Expanding Structural Diversity and the Antibacterial Spectrum
ACS Medicinal Chemistry Letters 2022.0
Novel N-Linked Aminopiperidine Inhibitors of Bacterial Topoisomerase Type II with Reduced pK<sub>a</sub>: Antibacterial Agents with an Improved Safety Profile
Journal of Medicinal Chemistry 2012.0
Left-Hand Side Exploration of Novel Bacterial Topoisomerase Inhibitors to Improve Selectivity against hERG Binding
ACS Medicinal Chemistry Letters 2015.0
Novel 3-fluoro-6-methoxyquinoline derivatives as inhibitors of bacterial DNA gyrase and topoisomerase IV
Bioorganic &amp; Medicinal Chemistry Letters 2017.0
Discovery and structure–activity relationships of a novel oxazolidinone class of bacterial type II topoisomerase inhibitors
Bioorganic &amp; Medicinal Chemistry Letters 2022.0
Novel bacterial topoisomerase inhibitors derived from isomannide
European Journal of Medicinal Chemistry 2020.0
Design, Synthesis, and Characterization of Novel Tetrahydropyran-Based Bacterial Topoisomerase Inhibitors with Potent Anti-Gram-Positive Activity
Journal of Medicinal Chemistry 2013.0