Design and synthesis of new quinoline derivatives as selective C-RAF kinase inhibitors with potent anticancer activity

European Journal of Medicinal Chemistry
2022.0

Abstract

This article describes the design, synthesis, and biological screening of a new series of diarylurea and diarylamide derivatives including quinoline core armed with dimethylamino or morpholino side chain. Fifteen target compounds were selected by the National Cancer Institute (NCI, USA) for in vitro antiproliferative screening against a panel of 60 cancer cell lines of nine cancer types. Compounds 1j-l showed the highest mean inhibition percentage values over the 60-cell line panel at 10 μM with broad-spectrum antiproliferative activity. Subsequently, compounds 1j-l were subjected to a dose-response study to measure their GI<sub>50</sub> and total growth inhibition (TGI) values against the cell lines. Three of the tested molecules exerted higher potency against most of the cell lines than the reference drug, sorafenib. Compound 1l indicated a higher potency than sorafenib against 53 of tested cancer cell lines. Compounds 1j-l demonstrated promising selectivity against cancer cells than normal cells. Moreover, compound 1l induced apoptosis and necrosis in RPMI-8226 cell line in a dose-dependent manner. In addition, compounds 1j-l were tested against C-RAF kinase as a potential molecular target. The three compounds showed high potency, and the most potent C-RAF kinase inhibitor was compound 1j with an IC<sub>50</sub> value of 0.067 μM. In addition, Compounds 1j-l were further tested at 1 μM concentration against a panel of another twelve kinases and they showed a high selectivity for C-RAF kinase. Molecular modeling studies were performed to illuminate on the putative binding interactions of these motifs in the active site of C-RAF kinase. Additional studies were conducted to measure aqueous solubility, partition coefficient, and Caco-2 permeability of the most promising derivatives.

Knowledge Graph

Similar Paper

Design and synthesis of new quinoline derivatives as selective C-RAF kinase inhibitors with potent anticancer activity
European Journal of Medicinal Chemistry 2022.0
Design and synthesis of new RAF kinase-inhibiting antiproliferative quinoline derivatives. Part 2: Diarylurea derivatives
European Journal of Medicinal Chemistry 2017.0
Design, synthesis and antitumor activities of novel bis-aryl ureas derivatives as Raf kinase inhibitors
Bioorganic &amp; Medicinal Chemistry 2012.0
3,3-Dimethyl-1H-pyrrolo[3,2-g]quinolin-2(3H)-one derivatives as novel Raf kinase inhibitors
Med. Chem. Commun. 2012.0
Design, synthesis, and biological evaluation of novel quinazolinyl-diaryl urea derivatives as potential anticancer agents
European Journal of Medicinal Chemistry 2016.0
Synthesis, in vitro antiproliferative activity, and kinase inhibitory effects of pyrazole-containing diarylureas and diarylamides
European Journal of Medicinal Chemistry 2018.0
New diarylamides and diarylureas possessing 8-amino(acetamido)quinoline scaffold: Synthesis, antiproliferative activities against melanoma cell lines, kinase inhibition, and in silico studies
European Journal of Medicinal Chemistry 2013.0
Design and synthesis of new potent anticancer benzothiazole amides and ureas featuring pyridylamide moiety and possessing dual B-RafV600E and C-Raf kinase inhibitory activities
European Journal of Medicinal Chemistry 2016.0
2-Anilinoquinoline based arylamides as broad spectrum anticancer agents with B-RAFV600E/C-RAF kinase inhibitory effects: Design, synthesis, in vitro cell-based and oncogenic kinase assessments
European Journal of Medicinal Chemistry 2020.0
Design, synthesis, broad-spectrum antiproliferative activity, and kinase inhibitory effect of triarylpyrazole derivatives possessing arylamides or arylureas moieties
European Journal of Medicinal Chemistry 2016.0