Three series of celastrol derivatives, namely, 6a-6i, 11a-11i and 15a-15i, were designed based on the scaffold hopping strategy. The derivatives were synthesized and biologically evaluated against five human tumor cell lines (i.e. A549, MCF-7, Bel7402, HT-29 and PC3) using MTT assay in vitro. Results showed that compound 11i exhibited apparent antiproliferative activity against the MCF-7 cell line with an IC<sub>50</sub> value of 1.31 μM and could remarkably inhibit the colony formation of the MCF-7 cells. Transmission electron microscopy assay, monodansylcadaverine incorporation assay and the expression of LC3 A/B, p62 and Beclin-1 in MCF-7 cells suggested that the potent antiproliferative activity of compound 11i was mainly due to its autophagy-inducing effect. Moreover, compound 11i could arrest the MCF-7 cells in the G2/M phase by regulating the cell-cycle-related proteins Cdk-1 and Cyclin B1. In the zebrafish xenograft model, compound 11i could obviously inhibit the proliferation of the MCF-7 cells. Thus, compound 11i could serve as a promising lead compound for breast cancer therapy.