Morphinan derivatives with an oxabicyclo[3.2.1]octane structure as dual agonists toward δ and κ opioid receptors

Bioorganic & Medicinal Chemistry
2022.0

Abstract

The κ opioid receptor (KOR) is one of the promising targets to develop analgesics lacking morphine like side effects. To seek a novel KOR agonist we designed 6-amide derivatives with an oxabicyclo[3.2.1]octane structure based on a proposed active conformation of a selective KOR agonist nalfurafine. All the synthesized compounds strongly bound to the KOR and some compound showed KOR selectivities. 6R-Amides were more potent and efficacious KOR agonists than the corresponding 6S-isomers. However, most 6-amide derivatives were partial KOR agonist. Conformational analyses of 6R- and 6S-amide derivatives and nalfurafine well accounted for the difference of KOR agonistic activities between two diastereomers. Surprisingly, the tested N-H amides were full δ opioid receptor (DOR) agonists. Among the tested compounds 7a with benzamide moiety was the most potent dual DOR/KOR agonist. On the other hand, 6S-phenylacetamide 8b was potent full DOR agonist with less efficacious agonist activity for the μ receptor and KOR. 6-Amide derivatives with an oxabicyclo[3.2.1]octane structure were expected to be a promising fundamental skeleton for the dual DOR/KOR agonists and/or selective DOR agonists.

Knowledge Graph

Similar Paper

Morphinan derivatives with an oxabicyclo[3.2.1]octane structure as dual agonists toward δ and κ opioid receptors
Bioorganic & Medicinal Chemistry 2022.0
Design, synthesis, and structure–activity relationship of novel opioid κ receptor selective agonists: α-Iminoamide derivatives with an azabicyclo[2.2.2]octene skeleton
Bioorganic & Medicinal Chemistry Letters 2014.0
Synthesis and Pharmacology of a Novel κ Opioid Receptor (KOR) Agonist with a 1,3,5-Trioxazatriquinane Skeleton
ACS Medicinal Chemistry Letters 2014.0
Highly selective .kappa. opioid analgesics. Synthesis and structure-activity relationships of novel N-[(2-aminocyclohexyl)aryl]acetamide and N-[(2-aminocyclohexyl)aryloxy]acetamide derivatives
Journal of Medicinal Chemistry 1988.0
Synthesis, Binding Affinity, and Functional in Vitro Activity of 3-Benzylaminomorphinan and 3-Benzylaminomorphine Ligands at Opioid Receptors
Journal of Medicinal Chemistry 2012.0
Synthesis, Pharmacology, and Molecular Docking Studies on 6-Desoxo-N-methylmorphinans as Potent μ-Opioid Receptor Agonists
Journal of Medicinal Chemistry 2017.0
Opioid agonists and antagonists. 6,6-Hydrazi and 6-oximino derivatives of 14-hydroxymorphinones
Journal of Medicinal Chemistry 1984.0
Design and synthesis of 10-oxo derivative of N-cyclopropylmethyl (−)-6β-acetylthiodihydro-normorphine, a potentially κ-selective opioid receptor ligand
Bioorganic & Medicinal Chemistry Letters 1995.0
Design, Synthesis, and Biological Evaluation of 6α- and 6β-N-Heterocyclic Substituted Naltrexamine Derivatives as μ Opioid Receptor Selective Antagonists
Journal of Medicinal Chemistry 2009.0
N-Phenethyl Substitution in 14-Methoxy-N-methylmorphinan-6-ones Turns Selective µ Opioid Receptor Ligands into Dual µ/δ Opioid Receptor Agonists
Scientific Reports 2020.0