N-Acylamino Saccharin as an Emerging Cysteine-Directed Covalent Warhead and Its Application in the Identification of Novel FBPase Inhibitors toward Glucose Reduction

Journal of Medicinal Chemistry
2022.0

Abstract

With a resurgence of covalent drugs, there is an urgent need for the identification of new moieties capable of cysteine bond formation. Herein, we report on the <i>N</i>-acylamino saccharin moieties capable of novel covalent reactions with cysteine. Their utility as alternative electrophilic warheads was demonstrated through the covalent modification of fructose-1,6-bisphosphatase (FBPase), a promising target associated with cancer and type 2 diabetes. The cocrystal structure of title compound <b>W8</b> bound with FBPase unexpectedly revealed that the <i>N</i>-acylamino saccharin moiety worked as an electrophile warhead that covalently modified the noncatalytic C128 site in FBPase while releasing saccharin, suggesting a previously undiscovered covalent reaction mechanism of saccharin derivatives with cysteine. Treatment of title compound <b>W8</b> displayed potent inhibition of glucose production in vitro and in vivo. This newly discovered reactive warhead supplements the current repertoire of cysteine covalent modifiers while avoiding some of the limitations generally associated with established moieties.

Knowledge Graph

Similar Paper

N-Acylamino Saccharin as an Emerging Cysteine-Directed Covalent Warhead and Its Application in the Identification of Novel FBPase Inhibitors toward Glucose Reduction
Journal of Medicinal Chemistry 2022.0
Discovery of novel allosteric site and covalent inhibitors of FBPase with potent hypoglycemic effects
European Journal of Medicinal Chemistry 2019.0
Development of disulfide-derived fructose-1,6-bisphosphatase (FBPase) covalent inhibitors for the treatment of type 2 diabetes
European Journal of Medicinal Chemistry 2020.0
Identification of the New Covalent Allosteric Binding Site of Fructose-1,6-bisphosphatase with Disulfiram Derivatives toward Glucose Reduction
Journal of Medicinal Chemistry 2020.0
Discovery of Novel Indole Derivatives as Fructose-1,6-bisphosphatase Inhibitors and X-ray Cocrystal Structures Analysis
ACS Medicinal Chemistry Letters 2022.0
Discovery of N-Arylsulfonyl-Indole-2-Carboxamide Derivatives as Potent, Selective, and Orally Bioavailable Fructose-1,6-Bisphosphatase Inhibitors—Design, Synthesis, In Vivo Glucose Lowering Effects, and X-ray Crystal Complex Analysis
Journal of Medicinal Chemistry 2020.0
Emerging and Re-Emerging Warheads for Targeted Covalent Inhibitors: Applications in Medicinal Chemistry and Chemical Biology
Journal of Medicinal Chemistry 2019.0
A road map for prioritizing warheads for cysteine targeting covalent inhibitors
European Journal of Medicinal Chemistry 2018.0
Designing inhibitors against fructose 1,6-bisphosphatase: Exploring natural products for novel inhibitor scaffolds
European Journal of Medicinal Chemistry 2010.0
Fructose-1,6-bisphosphatase Inhibitors. 1. Purine Phosphonic Acids as Novel AMP Mimics
Journal of Medicinal Chemistry 2009.0