Discovery of Small Molecules Simultaneously Targeting NAD(P)H:Quinone Oxidoreductase 1 and Nicotinamide Phosphoribosyltransferase: Treatment of Drug-Resistant Non-small-Cell Lung Cancer

Journal of Medicinal Chemistry
2022.0

Abstract

Targeting NAD<sup>+</sup> metabolism has emerged as an effective anticancer strategy. Inspired by the synergistic antitumor effect between NAD(P)H:quinone oxidoreductase 1 (NQO1) substrates increasing the NAD consumption and nicotinamide phosphoribosyltransferase (NAMPT) inhibitors hampering the NAD synthesis, first-in-class small molecules simultaneously targeting NQO1 and NAMPT were identified through structure-based design. In particular, compound <b>10d</b> is an excellent NQO1 substrate that is processed faster than TSA by NQO1 and exhibited a slightly decreased NAMPT inhibitory potency than that of FK866. It can selectively inhibit the proliferation of NQO1-overexpressing A549 cells and taxol-resistant A549/taxol cells and also induce cell apoptosis and inhibit cell migration in an NQO1- and NAMPT-dependent manner in A549/taxol cells. Significantly, compound <b>10d</b> demonstrated excellent <i>in vivo</i> antitumor efficacy in the A549/taxol xenograft models with no significant toxicity. This proof-of-concept study affirms the feasibility of discovering small molecules that target NQO1 and NAMPT simultaneously, and it also provides a novel, effective, and selective anticancer strategy.

Knowledge Graph

Similar Paper

Discovery of Small Molecules Simultaneously Targeting NAD(P)H:Quinone Oxidoreductase 1 and Nicotinamide Phosphoribosyltransferase: Treatment of Drug-Resistant Non-small-Cell Lung Cancer
Journal of Medicinal Chemistry 2022.0
Discovery of Nonquinone Substrates for NAD(P)H: Quinone Oxidoreductase 1 (NQO1) as Effective Intracellular ROS Generators for the Treatment of Drug-Resistant Non-Small-Cell Lung Cancer
Journal of Medicinal Chemistry 2018.0
Small Molecule Inhibitors Simultaneously Targeting Cancer Metabolism and Epigenetics: Discovery of Novel Nicotinamide Phosphoribosyltransferase (NAMPT) and Histone Deacetylase (HDAC) Dual Inhibitors
Journal of Medicinal Chemistry 2017.0
Dual NAMPT/HDAC Inhibitors as a New Strategy for Multitargeting Antitumor Drug Discovery
ACS Medicinal Chemistry Letters 2018.0
Structure-Based Design of Potent Nicotinamide Phosphoribosyltransferase Inhibitors with Promising in Vitro and in Vivo Antitumor Activities
Journal of Medicinal Chemistry 2016.0
Design, synthesis, and biological evaluation of NAD(P)H: Quinone oxidoreductase (NQO1)-targeted oridonin prodrugs possessing indolequinone moiety for hypoxia-selective activation
European Journal of Medicinal Chemistry 2017.0
Development of novel amino-quinoline-5,8-dione derivatives as NAD(P)H:quinone oxidoreductase 1 (NQO1) inhibitors with potent antiproliferative activities
European Journal of Medicinal Chemistry 2018.0
Dual nicotinamide phosphoribosyltransferase and epidermal growth factor receptor inhibitors for the treatment of cancer
European Journal of Medicinal Chemistry 2021.0
2-Substituted 3,7,8-trimethylnaphtho[1,2- b ]furan-4,5-diones as specific L-shaped NQO1-mediated redox modulators for the treatment of non-small cell lung cancer
European Journal of Medicinal Chemistry 2017.0
Synthesis and Evaluation of 3-Aryloxymethyl-1,2-dimethylindole-4,7-diones as Mechanism-Based Inhibitors of NAD(P)H:Quinone Oxidoreductase 1 (NQO1) Activity
Journal of Medicinal Chemistry 2007.0