2-[(2-Amino-6-methylpyrimidin-4-yl)sulfanyl]-N-arylacetamides: Discovery of a new class of anti-tubercular agents and prospects for their further structural modification

Bioorganic & Medicinal Chemistry Letters
2023.0

Abstract

The synthesis of 2-[(2-amino-6-methylpyrimidin-4-yl)sulfanyl]-N-arylacetamides 6a-j was encouraged by their antibacterial activity and drug-likeness predictions. Of the compounds, two bearing 4‑isopropylphenyl 6c and 2,5‑dichlorophenyl 6i moieties were found to be threefold more potent than the first-line tuberculosis drug ethambutol. A molecular docking study revealed that compound 6c may selectively bind to cyclopropane mycolic acid synthase 1, an enzyme essential for the construction of the tuberculosis bacteria cell wall. Keeping this in mind, a recently developed ligand-based virtual screening strategy combining the molecular similarity search and docking approaches was adopted to identify more potent analogs of the parent compound. As a result, a series of new ligands 18p-w with phenyl-substituted azinyl amide groups were in silico discovered. Due to their high binding affinities to the enzyme and improved toxicity profiles, the ligands are undoubtedly worth future synthetic efforts.

Knowledge Graph

Similar Paper

2-[(2-Amino-6-methylpyrimidin-4-yl)sulfanyl]-N-arylacetamides: Discovery of a new class of anti-tubercular agents and prospects for their further structural modification
Bioorganic & Medicinal Chemistry Letters 2023.0
Discovery of 5-methylpyrimidopyridone analogues as selective antimycobacterial agents
Bioorganic & Medicinal Chemistry 2021.0
Design, synthesis, antimycobacterial activity and molecular docking studies of novel 3- (N-substituted glycinamido) benzoic acid analogues as anti tubercular agents
Bioorganic & Medicinal Chemistry Letters 2020.0
N-Arylalkylbenzo[d]thiazole-2-carboxamides as anti-mycobacterial agents: design, new methods of synthesis and biological evaluation
Med. Chem. Commun. 2014.0
Novel amide and sulphonamide derivatives of 6-(piperazin-1-yl)phenanthridine as potent Mycobacterium tuberculosis H37Rv inhibitors
European Journal of Medicinal Chemistry 2015.0
The synthesis, biological evaluation and structure–activity relationship of 2-phenylaminomethylene-cyclohexane-1,3-diones as specific anti-tuberculosis agents
MedChemComm 2017.0
Synthesis, molecular docking and anti-mycobacterial evaluation of new imidazo[1,2-a]pyridine-2-carboxamide derivatives
European Journal of Medicinal Chemistry 2015.0
Synthesis, antimycobacterial screening and ligand-based molecular docking studies on novel pyrrole derivatives bearing pyrazoline, isoxazole and phenyl thiourea moieties
European Journal of Medicinal Chemistry 2016.0
Design, Synthesis, and Biological Evaluation of Pyrazolo[1,5-a]pyridine-3-carboxamides as Novel Antitubercular Agents
ACS Medicinal Chemistry Letters 2015.0
Pyrazole clubbed triazolo[1,5-a]pyrimidine hybrids as an anti-tubercular agents: Synthesis, in vitro screening and molecular docking study
Bioorganic & Medicinal Chemistry 2015.0