Enhancement of natamycin production on Streptomyces gilvosporeus by chromosomal integration of the Vitreoscilla hemoglobin gene (vgb)

World Journal of Microbiology and Biotechnology
2014.0

Abstract

Oxygen deficiency is a critical factor during the fermentation production of natamycin. In order to alleviate oxygen limitation and enhance the yield of natamycin, the vgb gene, encoding Vitreoscilla hemoglobin (VHb) was inserted into pSET152 with its native promoter and integrated into the chromosome of Streptomyces gilvosporeus (S. gilvosporeus). The expression of VHb was determined by Western blotting. The activity of expressed VHb was confirmed by the observation of VHb-specific CO-difference spectrum with a maximal absorption at 419 nm for the recombinant. Integration of the empty plasmid pSET152 did not affect natamycin production of S. gilvosporeus. While the vgb-harboring strain exhibited high natamycin productivity, reaching 3.31 g/L in shake flasks and 8.24 g/L in 1-L fermenters. Compared to the wild strain, expression of VHb, increased the natamycin yield of the strain bearing vgb by 131.3 % (jar fermenter scale) and 175 % (shake flask scale), respectively, under certain oxygen-limiting condition. Addition of an extra copy of the vgb gene in S. gilvosporeus-vgb2 did not enhance the natamycin production obviously. These results provided a superior natamycin-producing strain which can be directly used in industry and a useful strategy for increasing yields of other metabolites in industrial strains.

Knowledge Graph

Similar Paper

Enhancement of natamycin production on Streptomyces gilvosporeus by chromosomal integration of the Vitreoscilla hemoglobin gene (vgb)
World Journal of Microbiology and Biotechnology 2014.0
Enhancement of natamycin production on Streptomyces gilvosporeus by chromosomal integration of the Vitreoscilla hemoglobin gene (vgb)
World Journal of Microbiology and Biotechnology 2014.0
Improvement of Natamycin Production by Cholesterol Oxidase Overexpression in Streptomyces gilvosporeus
Journal of Microbiology and Biotechnology 2016.0
Complete Genome Sequence of the High-Natamycin-Producing Strain <i>Streptomyces gilvosporeus</i> F607
Genome Announcements 2018.0
Effects of cultivation conditions on the production of natamycin with Streptomyces gilvosporeus LK-196
Enzyme and Microbial Technology 2008.0
Development of Intergeneric Conjugal Gene Transfer System in Streptomyces diastatochromogenes 1628 and Its Application for Improvement of Toyocamycin Production
Current Microbiology 2014.0
Development of Intergeneric Conjugal Gene Transfer System in Streptomyces diastatochromogenes 1628 and Its Application for Improvement of Toyocamycin Production
Current Microbiology 2014.0
Enhancing macrolide production in Streptomyces by coexpressing three heterologous genes
Enzyme and Microbial Technology 2012.0
Biosynthesis regulation of natamycin production from <i>Streptomyces natalensis</i> HDMNTE-01 enhanced by response surface methodology
Preparative Biochemistry &amp; Biotechnology 2017.0
Enhanced Natamycin production by Streptomyces natalensis in shake-flasks and stirred tank bioreactor under batch and fed-batch conditions
BMC Biotechnology 2019.0