Cooperative Involvement of Glycosyltransferases in the Transfer of Amino Sugars during the Biosynthesis of the Macrolactam Sipanmycin by Streptomyces sp. Strain CS149

Applied and Environmental Microbiology
2018.0

Abstract

<jats:p> The rapid emergence of infectious diseases and multiresistant pathogens has increased the necessity for new bioactive compounds; thus, novel strategies have to be developed to find them. Actinomycetes isolated in symbiosis with insects have attracted attention in recent years as producers of metabolites with important bioactivities. Sipanmycins are glycosylated macrolactams produced by <jats:named-content content-type="genus-species">Streptomyces</jats:named-content> sp. CS149, isolated from leaf-cutting ants, and show potent cytotoxic activity. Here, we characterize the <jats:italic>sip</jats:italic> cluster and propose a biosynthetic pathway for sipanmycins. As far as we know, it is the first time that the cooperation between two different glycosyltransferases is demonstrated to be strictly necessary for the incorporation of the same sugar. Also, a third protein with homology to P450 monooxygenases, SipO2, is shown to be essential in the second glycosylation step, forming a complex with the glycosyltransferase pair SipS9-SipS14.

Knowledge Graph

Similar Paper

Cooperative Involvement of Glycosyltransferases in the Transfer of Amino Sugars during the Biosynthesis of the Macrolactam Sipanmycin by Streptomyces sp. Strain CS149
Applied and Environmental Microbiology 2018.0
New Sipanmycin Analogues Generated by Combinatorial Biosynthesis and Mutasynthesis Approaches Relying on the Substrate Flexibility of Key Enzymes in the Biosynthetic Pathway
Applied and Environmental Microbiology 2020.0
Two Cooperative Glycosyltransferases Are Responsible for the Sugar Diversity of Saquayamycins Isolated from <i>Streptomyces</i> sp. KY 40-1
ACS Chemical Biology 2017.0
Two Cooperative Glycosyltransferases Are Responsible for the Sugar Diversity of Saquayamycins Isolated from <i>Streptomyces</i> sp. KY 40-1
ACS Chemical Biology 2017.0
Glycosylation Steps during Spiramycin Biosynthesis in <i>Streptomyces ambofaciens</i> : Involvement of Three Glycosyltransferases and Their Interplay with Two Auxiliary Proteins
Antimicrobial Agents and Chemotherapy 2010.0
New Insights into the Glycosylation Steps in the Biosynthesis of Sch47554 and Sch47555
ChemBioChem 2018.0
Discovery and Biosynthesis of Glycosylated Cycloheximide from a Millipede-Associated Actinomycete
Journal of Natural Products 2023.0
Identification of Two Genes from <i>Streptomyces argillaceus</i> Encoding Glycosyltransferases Involved in Transfer of a Disaccharide during Biosynthesis of the Antitumor Drug Mithramycin
Journal of Bacteriology 1998.0
Characterization of two glycosyltransferases involved in early glycosylation steps during biosynthesis of the antitumor polyketide mithramycin by Streptomyces argillaceus
Molecular and General Genetics MGG 2000.0
Searching for Glycosylated Natural Products in Actinomycetes and Identification of Novel Macrolactams and Angucyclines
Frontiers in Microbiology 2018.0