<jats:p> Combinatorial biosynthesis has proved its usefulness in generating derivatives of already known compounds with novel or improved pharmacological properties. Sipanmycins are a family of glycosylated macrolactams produced by <jats:italic>Streptomyces</jats:italic> sp. strain CS149, whose antiproliferative activity is dependent on the sugar moieties attached to the aglycone. In this work, we report the generation of several sipanmycin analogues with different deoxysugars, showing the high degree of flexibility exerted by the glycosyltransferase machinery with respect to the recognition of diverse nucleotide-activated sugars. In addition, modifications in the macrolactam ring were introduced by mutasynthesis approaches, indicating that the enzymes involved in incorporating the starter unit have a moderate ability to introduce different types of β-amino acids. In conclusion, we have proved the substrate flexibility of key enzymes involved in sipanmycin biosynthesis, especially the glycosyltransferases, which can be exploited in future experiments.