Improvement of l-citrulline production in Corynebacterium glutamicum by ornithine acetyltransferase

Journal of Industrial Microbiology and Biotechnology
2015.0

Abstract

<jats:title>Abstract</jats:title> <jats:p>In this study, Corynebacterium glutamicum ATCC 13032 was engineered to produce l-citrulline through a metabolic engineering strategy. To prevent the flux away from l-citrulline and to increase the expression levels of genes involved in the citrulline biosynthesis pathway, the argininosuccinate synthase gene (argG) and the repressor gene (argR) were inactivated. The engineered C. glutamicum ATCC 13032 ∆argG ∆argR (CIT 2) produced higher amounts of l-citrulline (5.43 g/L) compared to the wildtype strain (0.15 g/L). To determine new strategies for further enhancement of l-citrulline production, the effect of l-citrulline on ornithine acetyltransferase (EC 2.3.1.35; OATase; ArgJ) was first investigated. Citrulline was determined to inhibit Ornithine acetyltransferase; for 50 % inhibition, citrulline concentration was 30 mM. The argJ gene from C. glutamicum ATCC 13032 was cloned, and the recombinant shuttle plasmid pXMJ19-argJ was constructed and expressed in C. glutamicum ATCC 13032 ∆argG ∆argR (CIT 2). Overexpression of the argJ gene exhibited increased OAT activity and resulted in a positive effect on citrulline production (8.51 g/L). These results indicate that OAT plays a vital role during l-citrulline production in C. glutamicum.

Knowledge Graph

Similar Paper

Improvement of <scp>l-</scp>citrulline production in <i>Corynebacterium glutamicum</i> by ornithine acetyltransferase
Journal of Industrial Microbiology and Biotechnology 2015.0
L-citrulline production by metabolically engineered Corynebacterium glutamicum from glucose and alternative carbon sources
AMB Express 2014.0
Systematic pathway engineering of Corynebacterium glutamicum S9114 for l-ornithine production
Microbial Cell Factories 2017.0
Improvement of l-ornithine production by attenuation of argF in engineered Corynebacterium glutamicum S9114
AMB Express 2018.0
Improvement of the ammonia assimilation for enhancing <scp>l</scp>-arginine production of <i>Corynebacterium crenatum</i>
Journal of Industrial Microbiology and Biotechnology 2017.0
Metabolic engineering of Corynebacterium glutamicum S9114 to enhance the production of l-ornithine driven by glucose and xylose
Bioresource Technology 2019.0
Metabolic engineering of <i>Corynebacterium glutamicum</i> for improved <scp>l</scp>-arginine synthesis by enhancing NADPH supply
Journal of Industrial Microbiology and Biotechnology 2019.0
Enhanced l-ornithine production by systematic manipulation of l-ornithine metabolism in engineered Corynebacterium glutamicum S9114
Bioresource Technology 2018.0
Controlling the transcription levels of <i>argGH</i> redistributed <scp>l</scp>-arginine metabolic flux in <i>N</i>-acetylglutamate kinase and ArgR-deregulated <i>Corynebacterium crenatum</i>
Journal of Industrial Microbiology and Biotechnology 2016.0
Reengineering of the feedback-inhibition enzyme <i>N</i>-acetyl-<scp>l</scp>-glutamate kinase to enhance <scp>l</scp>-arginine production in <i>Corynebacterium crenatum</i>
Journal of Industrial Microbiology and Biotechnology 2017.0