Improvement of l-ornithine production by attenuation of argF in engineered Corynebacterium glutamicum S9114

AMB Express
2018.0

Abstract

L-Ornithine, a non-essential amino acid, has enormous industrial applications in food, pharmaceutical, and chemical industries. Currently, L-ornithine production is focused on microorganism fermentation using Escherichia coli or Corynebacterium glutamicum. In C. glutamicum, development of high L-ornithine producing C. glutamicum was achieved by deletion of argF, but was accompanied by growth deficiency and arginine auxotrophy. L-Arginine has been routinely added to solve this problem; however, this increases production cost and causes feedback inhibition of N-acetyl-L-glutamate kinase activity. To avoid the drawbacks of growth disturbance due to disruption of ArgF, strategies were adopted to attenuate its expression. Firstly, ribosome binding site substitution and start codon replacement were introduced to construct recombinant C. glutamiucm strains, which resulted in an undesirable L-ornithine production titer. Then, we inserted a terminator (rrnB) between argD and argF, which significantly improved L-ornithine production and relieved growth disturbance. Transcription analysis confirmed that a terminator can be used to downregulate expression of argF and simultaneously improve the transcriptional level of genes in front of argF. Using disparate terminators to attenuate expression of argF, an optimal strain (CO-9) with a T4 terminator produced 6.1 g/L of L-ornithine, which is 42.8% higher than that produced by strain CO-1, and is 11.2-fold higher than that of the parent CO strain. Insertion of terminators with gradient termination intensity can be a stable and powerful method to exert precise control of the expression level of argF in the development of L-ornithine producing strains, with potential applications in metabolic engineering and synthetic biology.

Knowledge Graph

Similar Paper

Improvement of l-ornithine production by attenuation of argF in engineered Corynebacterium glutamicum S9114
AMB Express 2018.0
Systematic pathway engineering of Corynebacterium glutamicum S9114 for l-ornithine production
Microbial Cell Factories 2017.0
Metabolic engineering of Corynebacterium glutamicum S9114 to enhance the production of l-ornithine driven by glucose and xylose
Bioresource Technology 2019.0
Enhanced l-ornithine production by systematic manipulation of l-ornithine metabolism in engineered Corynebacterium glutamicum S9114
Bioresource Technology 2018.0
Improvement of <scp>l-</scp>citrulline production in <i>Corynebacterium glutamicum</i> by ornithine acetyltransferase
Journal of Industrial Microbiology and Biotechnology 2015.0
L-citrulline production by metabolically engineered Corynebacterium glutamicum from glucose and alternative carbon sources
AMB Express 2014.0
Metabolic engineering of <i>Corynebacterium glutamicum</i> for improved <scp>l</scp>-arginine synthesis by enhancing NADPH supply
Journal of Industrial Microbiology and Biotechnology 2019.0
Improvement of the ammonia assimilation for enhancing <scp>l</scp>-arginine production of <i>Corynebacterium crenatum</i>
Journal of Industrial Microbiology and Biotechnology 2017.0
Systems pathway engineering of Corynebacterium crenatum for improved L-arginine production
Scientific Reports 2016.0
Effect of Tween 40 and DtsR1 on l-arginine overproduction in Corynebacterium crenatum
Microbial Cell Factories 2015.0