Determination of morphine and its 3- and 6-glucuronides, codeine, codeine-glucuronide and 6-monoacetylmorphine in body fluids by liquid chromatography atmospheric pressure chemical ionization mass spectrometry

Journal of Chromatography B: Biomedical Sciences and Applications
1997.0

Abstract

A selective assay of morphine-3-glucuronide (M3G), morphine-6-glucuronide (M6G), morphine, codeine, codeine-6-glucuronide (C6G) and 6-monoacetylmorphine (6-MAM) based on liquid chromatography atmospheric pressure chemical ionization mass spectrometry (LC-APCI-MS) is described. The drugs were extracted from serum, autopsy blood, urine, cerebrospinal fluid or vitreous humor using C18 solid-phase extraction cartridges and subjected to LC-APCI-MS analysis. The separation was performed on an ODS column in acetonitrile-50 mM ammonium formate buffer, pH 3.0 (5:95), using a flow-rate gradient from 0.6 to 1.1 ml/min (total analysis time was 17 min). The quantitative analysis was done using deuterated analogues of each compound. Selected-ion monitoring detection was applied: m/z 286 (for morphine, M3G-aglycone and M6G-aglycone), 289 (for morphine-d3, M3G-d3-aglycone and M6G-d3-aglycone), 300 (for codeine and C6G-aglycone), 303 (for C6G-d3-aglycone), 306 (for codeine-d6), 328 (for 6-MAM), 334 (for 6-MAM-d6), 462 (for M3G and M6G), 465 (for M3G-d3 and M6G-d3), 476 (for C6G) and 479 (for C6G-d3). The limits of quantitation were: 1 microg/l for morphine, 2 microg/l for 6-MAM, 5 microg/l for M3G, M6G and codeine and 200 microg/I for C6G. The recovery ranged from 85 to 98% for each analyte. The method appeared very selective and may be used for the routine determination of opiates in body fluids of heroin abusers and patients treated with opiates.

Knowledge Graph

Similar Paper

Determination of morphine and its 3- and 6-glucuronides, codeine, codeine-glucuronide and 6-monoacetylmorphine in body fluids by liquid chromatography atmospheric pressure chemical ionization mass spectrometry
Journal of Chromatography B: Biomedical Sciences and Applications 1997.0
Octanol−, Chloroform−, and Propylene Glycol Dipelargonat−Water Partitioning of Morphine-6-glucuronide and Other Related Opiates
Journal of Medicinal Chemistry 1996.0
Presence of morphine and morphine-6-glucuronide in the marine mollusk Mytilus edulis ganglia determined by GC/MS and Q–TOF–MS
Molecular Brain Research 2001.0
Morphine Brain Pharmacokinetics at Very Low Concentrations Studied with Accelerator Mass Spectrometry and Liquid Chromatography-Tandem Mass Spectrometry
Drug Metabolism and Disposition 2011.0
Extractive acylation and mass spectrometric assay of 3-methoxytyramine, normetanephrine, and metanephrine in cerebrospinal fluid
Analytical Biochemistry 1985.0
Morphine 6-glucuronide and morphine 3-glucuronide as molecular chameleons with unexpected lipophilicity
Journal of Medicinal Chemistry 1991.0
Design, Chemical Synthesis, and Biological Evaluation of Thiosaccharide Analogues of Morphine- and Codeine-6-Glucuronide
Journal of Medicinal Chemistry 2004.0
A Rapid and Reliable Solid-Phase Extraction Method for High-Performance Liquid Chromatographic Analysis of Opium Alkaloids from Papaver Plants
Chemical and Pharmaceutical Bulletin 2005.0
Simultaneous determination of hydroxycinnamates and catechins in human urine samples by column switching liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry
Journal of Chromatography B 2003.0
Synthesis and biological evaluation of analogues of M6G
European Journal of Medicinal Chemistry 2011.0