Morphine Brain Pharmacokinetics at Very Low Concentrations Studied with Accelerator Mass Spectrometry and Liquid Chromatography-Tandem Mass Spectrometry

Drug Metabolism and Disposition
2011.0

Abstract

Morphine has been predicted to show nonlinear blood-brain barrier transport at lower concentrations. In this study, we investigated the possibility of separating active influx of morphine from its efflux by using very low morphine concentrations and compared accelerator mass spectrometry (AMS) with liquid chromatography-tandem mass spectrometry (LC-MS/MS) as a method for analyzing microdialysis samples. A 10-min bolus infusion of morphine, followed by a constant-rate infusion, was given to male rats (n = 6) to achieve high (250 ng/ml), medium (50 ng/ml), and low (10 ng/ml) steady-state plasma concentrations. An additional rat received infusions to achieve low (10 ng/ml), very low (2 ng/ml), and ultralow (0.4 ng/ml) concentrations. Unbound morphine concentrations from brain extracellular fluid and blood were sampled by microdialysis and analyzed by LC-MS/MS and AMS. The average partition coefficient for unbound drug (K(p,uu)) values for the low and medium steady-state levels were 0.22 ± 0.08 and 0.21 ± 0.05, respectively, when measured by AMS [not significant (NS); p = 0.5]. For the medium and high steady-state levels, K(p,uu) values were 0.24 ± 0.05 and 0.26 ± 0.05, respectively, when measured by LC-MS/MS (NS; p = 0.2). For the low, very low, and ultralow steady-state levels, K(p,uu) values were 0.16 ± 0.01, 0.16 ± 0.02, and 0.18 ± 0.03, respectively, when measured by AMS. The medium-concentration K(p,uu) values were, on average, 16% lower when measured by AMS than by LC-MS/MS. There were no significant changes in K(p,uu) over a 625-fold concentration range (0.4-250 ng/ml). It was not possible to separate active uptake transport from active efflux using these low concentrations. The two analytical methods provided indistinguishable results for plasma concentrations but differed by up to 38% for microdialysis samples; however, this difference did not affect our conclusions.

Knowledge Graph

Similar Paper

Morphine Brain Pharmacokinetics at Very Low Concentrations Studied with Accelerator Mass Spectrometry and Liquid Chromatography-Tandem Mass Spectrometry
Drug Metabolism and Disposition 2011.0
Structure−Brain Exposure Relationships in Rat and Human Using a Novel Data Set of Unbound Drug Concentrations in Brain Interstitial and Cerebrospinal Fluids
Journal of Medicinal Chemistry 2009.0
Pharmacokinetics of seven major active components of Mahuang decoction in rat blood and brain by LC–MS/MS coupled to microdialysis sampling
Naunyn-Schmiedeberg's Archives of Pharmacology 2020.0
Measurement of Unbound Drug Exposure in Brain: Modeling of pH Partitioning Explains Diverging Results between the Brain Slice and Brain Homogenate Methods
Drug Metabolism and Disposition 2011.0
Relationship between Brain Tissue Partitioning and Microemulsion Retention Factors of CNS Drugs
Journal of Medicinal Chemistry 2009.0
Brain Tissue Binding of Drugs: Evaluation and Validation of Solid Supported Porcine Brain Membrane Vesicles (TRANSIL) as a Novel High-Throughput Method
Drug Metabolism and Disposition 2011.0
Determination of morphine and its 3- and 6-glucuronides, codeine, codeine-glucuronide and 6-monoacetylmorphine in body fluids by liquid chromatography atmospheric pressure chemical ionization mass spectrometry
Journal of Chromatography B: Biomedical Sciences and Applications 1997.0
High-Throughput Screening of Drug−Brain Tissue Binding and in Silico Prediction for Assessment of Central Nervous System Drug Delivery
Journal of Medicinal Chemistry 2007.0
Pharmacokinetics of Laetispicine and Its Brain Distribution in Rats
The American Journal of Chinese Medicine 2010.0
A High-Throughput Cell-Based Method to Predict the Unbound Drug Fraction in the Brain
Journal of Medicinal Chemistry 2014.0