Glucosinolate and Amino Acid Biosynthesis in Arabidopsis

Plant Physiology
2004.0

Abstract

<jats:title>Abstract</jats:title><jats:p>Enzymes that catalyze the condensation of acetyl coenzyme A and 2-oxo acids are likely to be important in two distinct metabolic pathways in Arabidopsis. These are the synthesis of isopropylmalate, an intermediate of Leu biosynthesis in primary metabolism, and the synthesis of methylthioalkylmalates, intermediates of Met elongation in the synthesis of aliphatic glucosinolates (GSLs), in secondary metabolism. Four Arabidopsis genes in the ecotype Columbia potentially encode proteins that could catalyze these reactions. MAM1 and MAML are adjacent genes on chromosome 5 at the Gsl-elong locus, while MAML-3 and MAML-4 are at opposite ends of chr 1. The isopropylmalate synthase activity of each member of the MAM-like gene family was investigated by heterologous expression in an isopropylmalate synthase-null Escherichia coli mutant. Only the expression of MAML-3 restored the ability of the mutant to grow in the absence of Leu. A MAML knockout line (KO) lacked long-chain aliphatic GSLs, which were restored when the KO was transformed with a functional MAML gene. Variation in expression of MAML did not alter the total levels of Met-derived GSLs, but just the ratio of chain lengths. MAML overexpression in Columbia led to an increase in long-chain GSLs, and an increase in 3C GSLs. Moreover, plants overexpressing MAML contained at least two novel amino acids. One of these was positively identified via MS/MS as homo-Leu, while the other, with identical mass and fragmentation patterns, was likely to be homo-Ile. A MAML-4 KO did not exhibit any changes in GSL profile, but had perturbed soluble amino acid content.

Knowledge Graph

Similar Paper

Glucosinolate and Amino Acid Biosynthesis in Arabidopsis
Plant Physiology 2004.0
Biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana : recombinant expression and characterization of methylthioalkylmalate synthase, the condensing enzyme of the chain-elongation cycle
Planta 2004.0
Gene Duplication in the Diversification of Secondary Metabolism: Tandem 2-Oxoglutarate-Dependent Dioxygenases Control Glucosinolate Biosynthesis in Arabidopsis
The Plant Cell 2001.0
CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis
The Plant Journal 2003.0
Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. Catalyzes the Conversion of l-Phenylalanine to Phenylacetaldoxime in the Biosynthesis of Benzylglucosinolate
Journal of Biological Chemistry 2000.0
A Novel 2-Oxoacid-Dependent Dioxygenase Involved in the Formation of the Goiterogenic 2-Hydroxybut-3-enyl Glucosinolate and Generalist Insect Resistance in Arabidopsis    
Plant Physiology 2008.0
Biosynthesis of 3-methoxycarbonylpropylglucosinolate in an Erysimum species
Phytochemistry 1973.0
Sinapoylglucose: Malate Sinapoyltransferase Activity in Arabidopsis thaliana and Brassica rapa
Zeitschrift für Naturforschung C 1992.0
Molecular Phenotyping of the <i>pal1</i> and <i>pal2</i> Mutants of <i>Arabidopsis thaliana</i> Reveals Far-Reaching Consequences on Phenylpropanoid, Amino Acid, and Carbohydrate Metabolism
The Plant Cell 2004.0
Biosynthesis and biological activity of β-(5-methylisoxazolin-3-on-2-yl)alanine in higher plants
Phytochemistry 1985.0