Investigation of Early Tailoring Reactions in the Oxytetracycline Biosynthetic Pathway

Journal of Biological Chemistry
2007.0

Abstract

Tetracyclines are aromatic polyketides biosynthesized by bacterial type II polyketide synthases. The amidated tetracycline backbone is biosynthesized by the minimal polyketide synthases and an amidotransferase homologue OxyD. Biosynthesis of the key intermediate 6-methylpretetramid requires two early tailoring steps, which are cyclization of the linearly fused tetracyclic scaffold and regioselective C-methylation of the aglycon. Using a heterologous host (CH999)/vector pair, we identified the minimum set of enzymes from the oxytetracycline biosynthetic pathway that is required to afford 6-methylpretetramid in vivo. Only two cyclases (OxyK and OxyN) are necessary to completely cyclize and aromatize the amidated tetracyclic aglycon. Formation of the last ring via C-1/C-18 aldol condensation does not require a dedicated fourth-ring cyclase, in contrast to the biosynthetic mechanism of other tetracyclic aromatic polyketides, such as daunorubicin and tetracenomycin. Acetyl-derived polyketides do not undergo spontaneous fourth-ring cyclization and form only anthracene carboxylic acids as demonstrated both in vivo and in vitro. OxyF was identified to be the C-6 C-methyltransferase that regioselectively methylates pretetramid to yield 6-methylpretetramid. Reconstitution of 6-methylpretetramid in a heterologous host sets the stage for a more systematic investigation of additional tetracycline downstream tailoring enzymes and is a key step toward the engineered biosynthesis of tetracycline analogs.

Knowledge Graph

Similar Paper

Investigation of Early Tailoring Reactions in the Oxytetracycline Biosynthetic Pathway
Journal of Biological Chemistry 2007.0
Engineered Biosynthesis of a Novel Amidated Polyketide, Using the Malonamyl-Specific Initiation Module from the Oxytetracycline Polyketide Synthase
Applied and Environmental Microbiology 2006.0
Genetic characterization of enzymes involved in the priming steps of oxytetracycline biosynthesis in Streptomyces rimosus
Microbiology 2011.0
Oxidative cleavage of premithramycin B is one of the last steps in the biosynthesis of the antitumor drug mithramycin
Chemistry & Biology 1999.0
Genome Mining of the Biosynthetic Gene Cluster of the Polyene Macrolide Antibiotic Tetramycin and Characterization of a P450 Monooxygenase Involved in the Hydroxylation of the Tetramycin B Polyol Segment
ChemBioChem 2012.0
Folding of the polyketide chain is not dictated by minimal polyketide synthase in the biosynthesis of mithramycin and anthracycline
Chemistry & Biology 1997.0
Analysis of two chromosomal regions adjacent to genes for a type II polyketide synthase involved in the biosynthesis of the antitumor polyketide mithramycin in Streptomyces argillaceus
Molecular and General Genetics MGG 1999.0
Biosynthesis of the macrolide antibiotic tylosin. Origin of the oxygen atoms in tylactone
Journal of the Chemical Society, Chemical Communications 1983.0
Biosynthesis of 2′-<i>O</i>-Methylmyxalamide D in the Myxobacterium<i>Cystobacter fuscus</i>: a Polyketide Synthase-Nonribosomal Peptide Synthetase System for the Myxalamide D Skeleton and a Methyltransferase for the Final<i>O</i>-Methylation
Bioscience, Biotechnology, and Biochemistry 2006.0
Identification of the chelocardin biosynthetic gene cluster from Amycolatopsis sulphurea: a platform for producing novel tetracycline antibiotics
Microbiology 2013.0