JadR*‐mediated feed‐forward regulation of cofactor supply in jadomycin biosynthesis

Molecular Microbiology
2013.0

Abstract

<jats:title>Summary</jats:title><jats:p>Jadomycin production is under complex regulation in <jats:italic><jats:styled-content style="fixed-case">S</jats:styled-content>treptomyces venezuelae</jats:italic>. Here, another cluster‐situated regulator, <jats:styled-content style="fixed-case">JadR</jats:styled-content>*, was shown to negatively regulate jadomycin biosynthesis by binding to four upstream regions of <jats:styled-content style="fixed-case"><jats:italic>jadY</jats:italic></jats:styled-content>, <jats:styled-content style="fixed-case"><jats:italic>jadR1</jats:italic></jats:styled-content>, <jats:styled-content style="fixed-case"><jats:italic>jadI</jats:italic></jats:styled-content> and <jats:styled-content style="fixed-case"><jats:italic>jadE</jats:italic></jats:styled-content> in <jats:styled-content style="fixed-case"><jats:italic>jad</jats:italic></jats:styled-content> gene cluster respectively. The transcriptional levels of four target genes of <jats:styled-content style="fixed-case">JadR</jats:styled-content>* increased significantly in Δ<jats:styled-content style="fixed-case">jadR</jats:styled-content>*, confirming that these genes were directly repressed by <jats:styled-content style="fixed-case">JadR</jats:styled-content>*. Jadomycin <jats:styled-content style="fixed-case">B</jats:styled-content> (<jats:styled-content style="fixed-case">JdB</jats:styled-content>) and its biosynthetic intermediates 2,3‐dehydro‐<jats:styled-content style="fixed-case">UWM</jats:styled-content>6 (<jats:styled-content style="fixed-case">DHU</jats:styled-content>), dehydrorabelomycin (<jats:styled-content style="fixed-case">DHR</jats:styled-content>) and jadomycin <jats:styled-content style="fixed-case">A</jats:styled-content> (<jats:styled-content style="fixed-case">JdA</jats:styled-content>) modulated the <jats:styled-content style="fixed-case">DNA</jats:styled-content>‐binding activities of <jats:styled-content style="fixed-case">JadR</jats:styled-content>* on the <jats:styled-content style="fixed-case"><jats:italic>jadY</jats:italic></jats:styled-content> promoter, with <jats:styled-content style="fixed-case">DHR</jats:styled-content> giving the strongest dissociation effects. Direct interactions between <jats:styled-content style="fixed-case">JadR</jats:styled-content>* and these ligands were further demonstrated by surface plasmon resonance, which showed that <jats:styled-content style="fixed-case">DHR</jats:styled-content> has the highest affinity for <jats:styled-content style="fixed-case">JadR</jats:styled-content>*. However, only <jats:styled-content style="fixed-case">DHU</jats:styled-content> and <jats:styled-content style="fixed-case">DHR</jats:styled-content> could induce the expression of <jats:styled-content style="fixed-case"><jats:italic>jadY</jats:italic></jats:styled-content> and <jats:styled-content style="fixed-case"><jats:italic>jadR</jats:italic></jats:styled-content><jats:italic>* in vivo</jats:italic>. <jats:styled-content style="fixed-case">JadY</jats:styled-content> is the <jats:styled-content style="fixed-case">FMN</jats:styled-content>/<jats:styled-content style="fixed-case">FAD</jats:styled-content> reductase supplying cofactors <jats:styled-content style="fixed-case">FMNH</jats:styled-content><jats:sub>2</jats:sub>/<jats:styled-content style="fixed-case">FADH</jats:styled-content><jats:sub>2</jats:sub> for <jats:styled-content style="fixed-case">JadG</jats:styled-content>, an oxygenase, that catalyses the conversion of <jats:styled-content style="fixed-case">DHR</jats:styled-content> to <jats:styled-content style="fixed-case">JdA</jats:styled-content>. Therefore, our results revealed that <jats:styled-content style="fixed-case">JadR</jats:styled-content>* and early pathway intermediates, particularly <jats:styled-content style="fixed-case">DHR</jats:styled-content>, regulate cofactor supply by a convincing case of a feed‐forward mechanism. Such delicate regulation of expression of <jats:styled-content style="fixed-case"><jats:italic>jadY</jats:italic></jats:styled-content> could ensure a timely supply of cofactors <jats:styled-content style="fixed-case">FMNH</jats:styled-content><jats:sub>2</jats:sub>/<jats:styled-content style="fixed-case">FADH</jats:styled-content><jats:sub>2</jats:sub> for jadomycin biosynthesis, and avoid unnecessary consumption of <jats:styled-content style="fixed-case">NAD</jats:styled-content>(<jats:styled-content style="fixed-case">P</jats:styled-content>)<jats:styled-content style="fixed-case">H</jats:styled-content>.

Knowledge Graph

Similar Paper

<scp>JadR</scp>*‐mediated feed‐forward regulation of cofactor supply in jadomycin biosynthesis
Molecular Microbiology 2013.0
A γ‐butyrolactone‐sensing activator/repressor, <scp>JadR3</scp>, controls a regulatory mini‐network for jadomycin biosynthesis
Molecular Microbiology 2014.0
Identification of JadG as the B Ring Opening Oxygenase Catalyzing the Oxidative C-C Bond Cleavage Reaction in Jadomycin Biosynthesis
Chemistry &amp; Biology 2012.0
Biosynthesis of the dideoxysugar component of jadomycin B: genes in the jad cluster of Streptomyces venezuelae ISP5230 for l-digitoxose assembly and transfer to the angucycline aglycone The GenBank accession number for the sequence reported in this paper is AY026363.
Microbiology 2002.0
Engineering a regulatory region of jadomycin gene cluster to improve jadomycin B production in Streptomyces venezuelae
Applied Microbiology and Biotechnology 2007.0
An acyl-coenzyme A carboxylase encoding gene associated with jadomycin biosynthesis in Streptomyces venezuelae ISP5230 The GenBank accession number for the sequence reported in this paper is AF126429.
Microbiology 2000.0
Streptomyces venezuelae ISP5230 Maintains Excretion of Jadomycin upon Disruption of the MFS Transporter JadL Located within the Natural Product Biosynthetic Gene Cluster
Frontiers in Microbiology 2017.0
Copper-mediated nuclease activity of jadomycin B
Bioorganic &amp; Medicinal Chemistry 2011.0
Biosynthesis and Total Synthesis Studies on the Jadomycin Family of Natural Products
European Journal of Organic Chemistry 2012.0
The Dynamic Structure of Jadomycin B and the Amino Acid Incorporation Step of Its Biosynthesis
Journal of the American Chemical Society 2004.0