Metabolic Engineering of Cephalosporin Biosynthesis in Streptomyces clavuligerusa

Annals of the New York Academy of Sciences
1996.0

Abstract

The biosynthesis of beta-lactams is one of the most thoroughly studied antibiotic pathways. The availability of the characteristics and the time profiles of activities of enzymes involved in the biosynthesis allows one to critically evaluate the potential rate-limiting steps in its production. Our approach to understanding the control of beta-lactam biosynthesis has been pursued using a two-stage strategy: (1) to predict the rate-limiting steps using a kinetic model and (2) to relax the rate-limiting steps by engineering the biosynthetic pathway or by altering the kinetic parameters of the predicted key rate-limiting enzyme. Kinetic analysis of the pathway dynamics of cephamycin C production in Streptomyces clavuligerus was performed using data obtained from wild type. Sensitivity analysis revealed that the availability of precursor alpha-aminoadipic acid and activity of ACV synthetase were the potential rate-limiting steps. Relaxation of the precursor limitation was accomplished by integration of an additional copy of the gene encoding lysine-epsilon-aminotransferase (lat) into the chromosome. The recombinant strain showed an increased level of cephamycin C production as expected. The intracellular levels of different intermediates in the pathway in batch cultures were analyzed.

Knowledge Graph

Similar Paper

Metabolic Engineering of Cephalosporin Biosynthesis in Streptomyces clavuligerusa
Annals of the New York Academy of Sciences 1996.0
Clavulanic acid, a β-lactamase inhibitor: biosynthesis and molecular genetics
Applied Microbiology and Biotechnology 2000.0
Biosynthesis and Molecular Genetics of Clavulanic Acid
Antonie van Leeuwenhoek 1999.0
Possible involvement of the lysine  -aminotransferase gene (lat) in the expression of the genes encoding ACV synthetase (pcbAB) and isopenicillin N synthase (pcbC) in Streptomyces clavuligerus
Microbiology 1994.0
Cloning, characterization and heterologous expression of the aspartokinase and aspartate semialdehyde dehydrogenase genes of cephamycin C-producer Streptomyces clavuligerus
Research in Microbiology 2004.0
Regulation of cephamycin C synthesis, aspartokinase, dihydrodipicolinic acid synthetase, and homoserine dehydrogenase by aspartic acid family amino acids in Streptomyces clavuligerus
Antimicrobial Agents and Chemotherapy 1982.0
The biosynthetic genes for clavulanic acid and cephamycin production occur as a ‘super-cluster’ in three<i>Streptomyces</i>
FEMS Microbiology Letters 1993.0
Dissociation of cephamycin C and clavulanic acid biosynthesis by 1,3-diaminopropane in<i>Streptomyces clavuligerus</i>
FEMS Microbiology Letters 2016.0
Production kinetics and stability properties of ϖ(l-α-aminoadipyl)-l-cysteinyl-d-valine synthetase fromStreptomyces clavuligerus
Journal of Industrial Microbiology 1993.0
Homologous expression of lysA encoding diaminopimelic acid (DAP) decarboxylase reveals increased antibiotic production in Streptomyces clavuligerus
Brazilian Journal of Microbiology 2020.0