Biosynthesis of Cyanogenic Glucosides in Triglochin maritima and the Involvement of Cytochrome P450 Enzymes

Archives of Biochemistry and Biophysics
1999.0

Abstract

The biosynthesis of the two cyanogenic glucosides, taxiphyllin and triglochinin, in Triglochin maritima (seaside arrow grass) has been studied using undialyzed microsomal preparations from flowers and fruits. Tyrosine was converted to p-hydroxymandelonitrile with V(max) and K(m) values of 36 nmol mg(-1) g(-1) fresh weight and 0.14 mM, respectively. p-Hydroxyphenylacetaldoxime and p-hydroxyphenylacetonitrile accumulated as intermediates in the reaction mixtures. Using radiolabeled tyrosine as substrate, the radiolabel was easily trapped in p-hydroxyphenylacetaldoxime and p-hydroxyphenylacetonitrile when these were added as unlabeled compounds. p-Hydroxyphenylacetaldoxime was the only product obtained using microsomes prepared from green leaves or dialyzed microsomes prepared from flowers and fruits. These data contrast earlier reports (Hösel and Nahrstedt, Arch. Biochem. Biophys. 203, 753-757, 1980; and Cutler et al., J. Biol. Chem. 256, 4253-4258, 1981) where p-hydroxyphenylacetaldoxime was found not to accumulate. All steps in the conversion of tyrosine to p-hydroxymandelonitrile were found to be catalyzed by cytochrome P450 enzymes as documented by photoreversible carbon monoxide inhibition, inhibition by antibodies toward NADPH-cytochrome P450 oxidoreductase, and by cytochrome P450 inhibitors. We hypothesize that cyanogenic glucoside synthesis in T. maritima is catalyzed by multifunctional cytochrome P450 enzymes similar to CYP79A1 and CYP71E1 in Sorghum bicolor except that the homolog to CYP71E1 in T. maritima exhibits a less tight binding of p-hydroxyphenylacetonitrile, thus permitting the release of this intermediate and its conversion into triglochinin.

Knowledge Graph

Similar Paper

Biosynthesis of Cyanogenic Glucosides in Triglochin maritima and the Involvement of Cytochrome P450 Enzymes
Archives of Biochemistry and Biophysics 1999.0
Ring cleavage of phenols in higher plants: Biosynthesis of triglochinin
Phytochemistry 1981.0
Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. Catalyzes the Conversion of l-Phenylalanine to Phenylacetaldoxime in the Biosynthesis of Benzylglucosinolate
Journal of Biological Chemistry 2000.0
The Primary Sequence of Cytochrome P450tyr, the MultifunctionalN-Hydroxylase Catalyzing the Conversion ofL-Tyrosine top-Hydroxyphenylacetaldehyde Oxime in the Biosynthesis of the Cyanogenic Glucoside Dhurrin inSorghum bicolor(L.) Moench
Archives of Biochemistry and Biophysics 1995.0
Biosynthesis of rhodiocyanosides in Lotus japonicus: Rhodiocyanoside A is synthesized from (Z)-2-methylbutanaloxime via 2-methyl-2-butenenitrile
Phytochemistry 2012.0
Cytochrome P450-catalyzed hydroxylation of taxa-4(5),11(12)-diene to taxa-4(20),11(12)-dien-5a-o1: the first oxygenation step in taxol biosynthesis
Chemistry & Biology 1996.0
The Multifunctional Enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) Converts Cysteine-Indole-3-Acetonitrile to Camalexin in the Indole-3-Acetonitrile Metabolic Network of<i>Arabidopsis thaliana</i>   
The Plant Cell 2009.0
A Stereoselective Hydroxylation Step of Alkaloid Biosynthesis by a Unique Cytochrome P450 in Catharanthus roseus
Journal of Biological Chemistry 2011.0
CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis
The Plant Journal 2003.0
CYP96T1 of Narcissus sp. aff. pseudonarcissus Catalyzes Formation of the Para-Para' C-C Phenol Couple in the Amaryllidaceae Alkaloids
Frontiers in Plant Science 2016.0