Genome-Wide Characterization of the Lignification Toolbox in Arabidopsis  

Plant Physiology
2003.0

Abstract

<jats:title>Abstract</jats:title><jats:p>Lignin, one of the most abundant terrestrial biopolymers, is indispensable for plant structure and defense. With the availability of the full genome sequence, large collections of insertion mutants, and functional genomics tools, Arabidopsis constitutes an excellent model system to profoundly unravel the monolignol biosynthetic pathway. In a genome-wide bioinformatics survey of the Arabidopsis genome, 34 candidate genes were annotated that encode genes homologous to the 10 presently known enzymes of the monolignol biosynthesis pathway, nine of which have not been described before. By combining evolutionary analysis of these 10 gene families with in silico promoter analysis and expression data (from a reverse transcription-polymerase chain reaction analysis on an extensive tissue panel, mining of expressed sequence tags from publicly available resources, and assembling expression data from literature), 12 genes could be pinpointed as the most likely candidates for a role in vascular lignification. Furthermore, a possible novel link was detected between the presence of the AC regulatory promoter element and the biosynthesis of G lignin during vascular development. Together, these data describe the full complement of monolignol biosynthesis genes in Arabidopsis, provide a unified nomenclature, and serve as a basis for further functional studies.

Knowledge Graph

Similar Paper

Genome-Wide Characterization of the Lignification Toolbox in Arabidopsis  
Plant Physiology 2003.0
Characterization in vitro and in vivo of the putative multigene 4-coumarate:CoA ligase network in Arabidopsis: syringyl lignin and sinapate/sinapyl alcohol derivative formation
Phytochemistry 2005.0
Molecular Phenotyping of the <i>pal1</i> and <i>pal2</i> Mutants of <i>Arabidopsis thaliana</i> Reveals Far-Reaching Consequences on Phenylpropanoid, Amino Acid, and Carbohydrate Metabolism
The Plant Cell 2004.0
The inositol oxygenase gene family of Arabidopsis is involved in the biosynthesis of nucleotide sugar precursors for cell-wall matrix polysaccharides
Planta 2005.0
Arabidopsis phosphoribosylanthranilate isomerase: molecular genetic analysis of triplicate tryptophan pathway genes.
The Plant Cell 1995.0
Genome-wide analysis of the UDP-glucose dehydrogenase gene family in Arabidopsis, a key enzyme for matrix polysaccharides in cell walls
Journal of Experimental Botany 2007.0
Recent advances in the role and biosynthesis of ascorbic acid in plants
Plant, Cell &amp; Environment 2001.0
Tapetum‐specific location of a cation‐dependent <i>O</i>‐methyltransferase in <i>Arabidopsis thaliana</i>
The Plant Journal 2008.0
Metabolome Analysis of Biosynthetic Mutants Reveals a Diversity of Metabolic Changes and Allows Identification of a Large Number of New Compounds in Arabidopsis    
Plant Physiology 2008.0
Glucosinolate and Amino Acid Biosynthesis in Arabidopsis
Plant Physiology 2004.0