Deoxysugar Methylation during Biosynthesis of the Antitumor Polyketide Elloramycin by Streptomyces olivaceus

Journal of Biological Chemistry
2001.0

Abstract

The anthracycline-like polyketide drug elloramycin is produced by Streptomyces olivaceus Tü2353. Elloramycin has antibacterial activity against Gram-positive bacteria and also exhibits antitumor activity. From a cosmid clone (cos16F4) containing part of the elloramycin biosynthesis gene cluster, three genes (elmMI, elmMII, and elmMIII) have been cloned. Sequence analysis and data base comparison showed that their deduced products resembled S-adenosylmethionine-dependent O-methyltransferases. The genes were individually expressed in Streptomyces albus and also coexpressed with genes involved in the biosynthesis of l-rhamnose, the 6-deoxysugar attached to the elloramycin aglycon. The resulting recombinant strains were used to biotransform three different elloramycin-type compounds: l-rhamnosyl-tetracenomycin C, l-olivosyl-tetracenomycin C, and l-oleandrosyl-tetracenomycin, which differ in their 2'-, 3'-, and 4'-substituents of the sugar moieties. When only the three methyltransferase-encoding genes elmMI, elmMII, and elmMIII were individually expressed in S. albus, the methylating activity of the three methyltransferases was also assayed in vitro using various externally added glycosylated substrates. From the combined results of all of these experiments, it is proposed that methyltransferases ElmMI, ElmMII, and ElmMIII are involved in the biosynthesis of the permethylated l-rhamnose moiety of elloramycin. ElmMI, ElmMII, and ElmMIII are responsible for the consecutive methylation of the hydroxy groups at the 2'-, 3'-, and 4'-position, respectively, after the sugar moiety has been attached to the aglycon.

Knowledge Graph

Similar Paper

Deoxysugar Methylation during Biosynthesis of the Antitumor Polyketide Elloramycin by Streptomyces olivaceus
Journal of Biological Chemistry 2001.0
Biosynthesis of elloramycin in Streptomyces olivaceus requires glycosylation by enzymes encoded outside the aglycon cluster
Microbiology 2008.0
Characterization of Two Polyketide Methyltransferases Involved in the Biosynthesis of the Antitumor Drug Mithramycin byStreptomyces argillaceus
Journal of Biological Chemistry 2000.0
Characterization of two glycosyltransferases involved in early glycosylation steps during biosynthesis of the antitumor polyketide mithramycin by Streptomyces argillaceus
Molecular and General Genetics MGG 2000.0
Identification of Two Genes from <i>Streptomyces argillaceus</i> Encoding Glycosyltransferases Involved in Transfer of a Disaccharide during Biosynthesis of the Antitumor Drug Mithramycin
Journal of Bacteriology 1998.0
The mtmVUC genes of the mithramycin gene cluster in Streptomycesargillaceus are involved in the biosynthesis of the sugar moieties
Molecular Genetics and Genomics 2001.0
Ketopremithramycins and Ketomithramycins, Four New Aureolic Acid-Type Compounds Obtained upon Inactivation of Two Genes Involved in the Biosynthesis of the Deoxysugar Moieties of the Antitumor Drug Mithramycin by <i>Streptomyces </i><i>A</i><i>rgillaceus</i>, Reveal Novel Insights into Post-PKS Tailoring Steps of the Mithramycin Biosynthetic Pathway
Journal of the American Chemical Society 2002.0
Biosynthesis of 2′-<i>O</i>-Methylmyxalamide D in the Myxobacterium<i>Cystobacter fuscus</i>: a Polyketide Synthase-Nonribosomal Peptide Synthetase System for the Myxalamide D Skeleton and a Methyltransferase for the Final<i>O</i>-Methylation
Bioscience, Biotechnology, and Biochemistry 2006.0
Analysis of two chromosomal regions adjacent to genes for a type II polyketide synthase involved in the biosynthesis of the antitumor polyketide mithramycin in Streptomyces argillaceus
Molecular and General Genetics MGG 1999.0
Formation and Attachment of the Deoxysugar Moiety and Assembly of the Gene Cluster for Caprazamycin Biosynthesis
Applied and Environmental Microbiology 2010.0